Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 139: 103691, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38744091

RESUMO

The ATP-dependent molecular chaperone Cdc48 (in yeast) and its human counterpart p97 (also known as VCP), are essential for a variety of cellular processes, including the removal of DNA-protein crosslinks (DPCs) from the DNA. Growing evidence demonstrates in the last years that Cdc48/p97 is pivotal in targeting ubiquitinated and SUMOylated substrates on chromatin, thereby supporting the DNA damage response. Along with its cofactors, notably Ufd1-Npl4, Cdc48/p97 has emerged as a central player in the unfolding and processing of DPCs. This review introduces the detailed structure, mechanism and cellular functions of Cdc48/p97 with an emphasis on the current knowledge of DNA-protein crosslink repair pathways across several organisms. The review concludes by discussing the potential therapeutic relevance of targeting p97 in DPC repair.


Assuntos
Reparo do DNA , Proteínas de Saccharomyces cerevisiae , Proteína com Valosina , Proteína com Valosina/metabolismo , Humanos , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Dano ao DNA , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Animais , Peptídeos e Proteínas de Sinalização Intracelular
2.
EMBO J ; 42(13): e113609, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37144685

RESUMO

DNA-protein crosslinks (DPCs) pose a serious threat to genome stability. The yeast proteases Wss1, 26S proteasome, and Ddi1 are safeguards of genome integrity by acting on a plethora of DNA-bound proteins in different cellular contexts. The AAA ATPase Cdc48/p97 is known to assist Wss1/SPRTN in clearing DNA-bound complexes; however, its contribution to DPC proteolysis remains unclear. Here, we show that the Cdc48 adaptor Ubx5 is detrimental in yeast mutants defective in DPC processing. Using an inducible site-specific crosslink, we show that Ubx5 accumulates at persistent DPC lesions in the absence of Wss1, which prevents their efficient removal from the DNA. Abolishing Cdc48 binding or complete loss of Ubx5 suppresses sensitivity of wss1∆ cells to DPC-inducing agents by favoring alternate repair pathways. We provide evidence for cooperation of Ubx5-Cdc48 and Wss1 in the genotoxin-induced degradation of RNA polymerase II (RNAPII), a described candidate substrate of Wss1. We propose that Ubx5-Cdc48 assists Wss1 for proteolysis of a subset of DNA-bound proteins. Together, our findings reveal a central role for Ubx5 in DPC clearance and repair.


Assuntos
Reparo do DNA , Saccharomyces cerevisiae , DNA/metabolismo , Dano ao DNA , Endopeptidases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas
3.
Commun Biol ; 5(1): 325, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388146

RESUMO

CRISPR-Cas12a proteins are RNA-guided endonucleases that cleave invading DNA containing target sequences adjacent to protospacer adjacent motifs (PAM). Cas12a orthologs have been repurposed for genome editing in non-native organisms by reprogramming them with guide RNAs to target specific sites in genomic DNA. After single-turnover dsDNA target cleavage, multiple-turnover, non-specific single-stranded DNA cleavage in trans is activated. This property has been utilized to develop in vitro assays to detect the presence of specific DNA target sequences. Most applications of Cas12a use one of three well-studied enzymes. Here, we characterize the in vitro activity of two previously unknown Cas12a orthologs. These enzymes are active at higher temperatures than widely used orthologs and have subtle differences in PAM preference, on-target cleavage, and trans nuclease activity. Together, our results enable refinement of Cas12a-based in vitro assays especially when elevated temperature is desirable.


Assuntos
Sistemas CRISPR-Cas , Clivagem do DNA , DNA/genética , Conformação de Ácido Nucleico , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
4.
Cell Rep ; 37(8): 110034, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34818558

RESUMO

Endogenous metabolites, environmental agents, and therapeutic drugs promote formation of covalent DNA-protein crosslinks (DPCs). Persistent DPCs compromise genome integrity and are eliminated by multiple repair pathways. Aberrant Top1-DNA crosslinks, or Top1ccs, are processed by Tdp1 and Wss1 functioning in parallel pathways in Saccharomyces cerevisiae. It remains obscure how cells choose between diverse mechanisms of DPC repair. Here, we show that several SUMO biogenesis factors (Ulp1, Siz2, Slx5, and Slx8) control repair of Top1cc or an analogous DPC lesion. Genetic analysis reveals that SUMO promotes Top1cc processing in the absence of Tdp1 but has an inhibitory role if cells additionally lack Wss1. In the tdp1Δ wss1Δ mutant, the E3 SUMO ligase Siz2 stimulates sumoylation in the vicinity of the DPC, but not SUMO conjugation to Top1. This Siz2-dependent sumoylation inhibits alternative DPC repair mechanisms, including Ddi1. Our findings suggest that SUMO tunes available repair pathways to facilitate faithful DPC repair.


Assuntos
Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/fisiologia , Cisteína Endopeptidases/metabolismo , DNA/metabolismo , Reparo do DNA/genética , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/genética , Diester Fosfórico Hidrolases/metabolismo , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação/genética , Sumoilação/fisiologia , Ubiquitina-Proteína Ligases/metabolismo
5.
Mol Cell ; 77(5): 1066-1079.e9, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31902667

RESUMO

Naturally occurring or drug-induced DNA-protein crosslinks (DPCs) interfere with key DNA transactions if not repaired in a timely manner. The unique family of DPC-specific proteases Wss1/SPRTN targets DPC protein moieties for degradation, including stabilized topoisomerase-1 cleavage complexes (Top1ccs). Here, we describe that the efficient DPC disassembly requires Ddi1, another conserved predicted protease in Saccharomyces cerevisiae. We found Ddi1 in a genetic screen of the tdp1 wss1 mutant defective in Top1cc processing. Ddi1 is recruited to a persistent Top1cc-like DPC lesion in an S phase-dependent manner to assist in the eviction of crosslinked protein from DNA. Loss of Ddi1 or its putative protease activity hypersensitizes cells to DPC trapping agents independently from Wss1 and 26S proteasome, implying its broader role in DPC repair. Among the potential Ddi1 targets, we found the core component of Pol II and show that its genotoxin-induced degradation is impaired in ddi1. We propose that the Ddi1 protease contributes to DPC proteolysis.


Assuntos
Dano ao DNA , Reparo do DNA , DNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Animais , DNA Nucleotidiltransferases/genética , DNA Nucleotidiltransferases/metabolismo , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Fúngico/genética , Regulação Fúngica da Expressão Gênica , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Proteólise , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Células Sf9 , Spodoptera , Transcrição Gênica
6.
Nucleic Acids Res ; 45(15): 8993-9004, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28911115

RESUMO

Cricket paralysis virus (CrPV) is a dicistrovirus. Its positive-sense single-stranded RNA genome contains two internal ribosomal entry sites (IRESs). The 5' untranslated region (5'UTR) IRES5'UTR mediates translation of non-structural proteins encoded by ORF1 whereas the well-known intergenic region (IGR) IRESIGR is required for translation of structural proteins from open reading frame 2 in the late phase of infection. Concerted action of both IRES is essential for host translation shut-off and viral translation. IRESIGR has been extensively studied, in contrast the IRES5'UTR remains largely unexplored. Here, we define the minimal IRES element required for efficient translation initiation in drosophila S2 cell-free extracts. We show that IRES5'UTR promotes direct recruitment of the ribosome on the cognate viral AUG start codon without any scanning step, using a Hepatitis-C virus-related translation initiation mechanism. Mass spectrometry analysis revealed that IRES5'UTR recruits eukaryotic initiation factor 3, confirming that it belongs to type III class of IRES elements. Using Selective 2'-hydroxyl acylation analyzed by primer extension and DMS probing, we established a secondary structure model of 5'UTR and of the minimal IRES5'UTR. The IRES5'UTR contains a pseudoknot structure that is essential for proper folding and ribosome recruitment. Overall, our results pave the way for studies addressing the synergy and interplay between the two IRES from CrPV.


Assuntos
Regiões 5' não Traduzidas , Dicistroviridae/genética , Sítios Internos de Entrada Ribossomal , Biossíntese de Proteínas , RNA Viral/química , Proteínas Virais/química , Animais , Sequência de Bases , Linhagem Celular , Sistema Livre de Células/metabolismo , Dicistroviridae/crescimento & desenvolvimento , Dicistroviridae/metabolismo , Drosophila melanogaster/virologia , Gryllidae/virologia , Interações Hospedeiro-Patógeno , Conformação de Ácido Nucleico , Fases de Leitura Aberta , RNA Viral/genética , RNA Viral/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...