Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693434

RESUMO

Increasing evidence points to the microbial exposome as a critical factor in maturing and shaping the host immune system, thereby influencing responses to immune challenges such as infections or vaccines. To investigate the effect of early-life viral exposures on immune development and vaccine responses, we inoculated mice with six distinct viral pathogens in sequence beginning in the neonatal period, and then evaluated their immune signatures before and after intramuscular or intranasal vaccination against SARS-CoV-2. Sequential viral infection drove profound changes in all aspects of the immune system, including increasing circulating leukocytes, altering innate and adaptive immune cell lineages in tissues, and markedly influencing serum cytokine and total antibody levels. Beyond these immune responses changes, these exposures also modulated the composition of the endogenous intestinal microbiota. Although sequentially-infected mice exhibited increased systemic immune activation and T cell responses after intramuscular and intranasal SARS-CoV-2 immunization, we observed decreased vaccine-induced antibody responses in these animals. These results suggest that early-life viral exposures are sufficient to diminish antibody responses to vaccination in mice, and highlight their potential importance of considering prior microbial exposures when investigating vaccine responses.

2.
JCI Insight ; 8(8)2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36881475

RESUMO

Necrotizing enterocolitis (NEC) is a deadly gastrointestinal disease of premature infants that is associated with an exaggerated inflammatory response, dysbiosis of the gut microbiome, decreased epithelial cell proliferation, and gut barrier disruption. We describe an in vitro model of the human neonatal small intestinal epithelium (Neonatal-Intestine-on-a-Chip) that mimics key features of intestinal physiology. This model utilizes intestinal enteroids grown from surgically harvested intestinal tissue from premature infants and cocultured with human intestinal microvascular endothelial cells within a microfluidic device. We used our Neonatal-Intestine-on-a-Chip to recapitulate NEC pathophysiology by adding infant-derived microbiota. This model, named NEC-on-a-Chip, simulates the predominant features of NEC, including significant upregulation of proinflammatory cytokines, decreased intestinal epithelial cell markers, reduced epithelial proliferation, and disrupted epithelial barrier integrity. NEC-on-a-Chip provides an improved preclinical model of NEC that facilitates comprehensive analysis of the pathophysiology of NEC using precious clinical samples. This model is an advance toward a personalized medicine approach to test new therapeutics for this devastating disease.


Assuntos
Células Endoteliais , Enterocolite Necrosante , Lactente , Recém-Nascido , Humanos , Recém-Nascido Prematuro , Mucosa Intestinal , Dispositivos Lab-On-A-Chip
3.
Front Immunol ; 13: 943334, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935957

RESUMO

Interferons (IFN) are antiviral cytokines with critical roles in regulating pathogens at epithelial barriers, but their capacity to restrict human enteric viruses has been incompletely characterized in part due to challenges in cultivating some viruses in vitro, particularly human norovirus. Accordingly, advancements in the development of antiviral therapies and vaccine strategies for enteric viral infections have been similarly constrained. Currently emerging is the use of human intestinal enteroids (HIEs) to investigate mechanisms of human enteric viral pathogenesis. HIEs provide a unique opportunity to investigate host-virus interactions using an in vitro system that recapitulates the cellular complexity of the in vivo gastrointestinal epithelium. This approach permits the exploration of intestinal epithelial cell interactions with enteric viruses as well as the innate immune responses mediated by IFNs and IFN-stimulated genes. Here, we describe recent findings related to the production, signaling, and function of IFNs in the response to enteric viral infections, which will ultimately help to reveal important aspects of pathogenesis and facilitate the future development of therapeutics and vaccines.


Assuntos
Infecções por Enterovirus , Enterovirus , Antivirais , Humanos , Imunidade Inata , Interferons , Organoides
4.
Clin Epigenetics ; 14(1): 49, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410447

RESUMO

OBJECTIVE: Necrotizing enterocolitis (NEC) is the most common and lethal gastrointestinal disease affecting preterm infants. NEC develops suddenly and is characterized by gut barrier destruction, an inflammatory response, intestinal necrosis and multi-system organ failure. There is currently no method for early NEC detection, and the pathogenesis of NEC remains unclear. DESIGN: To further understand the molecular mechanisms that support NEC, we used solution phase hybridization and next-generation DNA sequencing of bisulfite converted DNA to perform targeted genome-wide analysis of DNA methylation at high read depth. RESULTS: We found that ileal samples from surgical NEC infants (n = 5) exist in a broadly hypermethylated state relative to their non-NEC counterparts (n = 9). These trends were not uniform, with hypermethylation being most consistently observed outside CpG islands and promoters. We further identified several biologically interesting gene promoters that displayed differential methylation in NEC and a number of biological pathways that appear dysregulated in NEC. We also found that DNA methylation patterns identified in ileal NEC tissue were correlated with those found and published previously in stool samples from NEC-affected infants. CONCLUSION: We confirmed that surgical NEC is associated with broad DNA hypermethylation in the ileum, and this may be detectable in stool samples of affected individuals. Thus, an epigenomic liquid biopsy of stool may have significant potential as a biomarker with respect to the diagnostic/predictive detection of NEC. Our findings, along with recent similar observations in colon, suggest that epigenomic dysregulation is a significant feature of surgical NEC. These findings motivate future studies which will involve the longitudinal screening of samples obtained prior to the onset of NEC. Our long-term goal is the development of novel screening, diagnostic and phenotyping methods for NEC.


Assuntos
Enterocolite Necrosante , Doenças do Recém-Nascido , Ilhas de CpG , Metilação de DNA , Enterocolite Necrosante/diagnóstico , Enterocolite Necrosante/genética , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Intestino Delgado/patologia
5.
Acta Haematol ; 145(2): 160-169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34749363

RESUMO

INTRODUCTION: Unlike homozygous hemoglobin SS (HbSS) disease, stroke is a rare complication in hemoglobin SC (HbSC) disease. However, recent studies have demonstrated a high prevalence of silent stroke in HbSC disease. The factors associated with stroke and cerebral vasculopathy in the HbSC population are unknown. METHODS: We conducted a retrospective study of all patients with sickle cell disease treated at the University of Missouri, Columbia, over an 18-year period (2000-2018). The goal of the study was to characterize the silent, overt stroke, and cerebral vasculopathy in HbSC patients and compare them to patients with HbSS and HbS/ß thalassemia1 (thal) in this cohort. We also analyzed the laboratory and clinical factors associated with stroke and cerebral vasculopathy in the HbSC population. RESULTS: Of the 34 HbSC individuals, we found that the overall prevalence of stroke and cerebral vasculopathy was 17.7%. Only females had evidence of stroke or cerebral vasculopathy in our HbSC cohort (33.3%, p = 0.019). Time-averaged means of maximum velocities were lower in the HbSC group than the HbSS group and did not correlate with stroke outcome. Among HbSC individuals, those with stroke and cerebral vasculopathy had a marginally higher serum creatinine than those without these complications (0.77 mg/dL vs. 0.88 mg/dL, p = 0.08). Stroke outcome was associated with recurrent vaso-occlusive pain crises (Rec VOCs) (75 vs. 25%, p = 0.003) in HbSC patients. The predominant cerebrovascular lesions in HbSC included microhemorrhages and leukoencephalopathy. CONCLUSION: There is a distinct subset of individuals with HbSC who developed overt, silent stroke, and cerebral vasculopathy. A female predominance and association with Rec VOCs were identified in our cohort; however, larger clinical trials are needed to identify and confirm specific clinical and laboratory markers associated with stroke and vasculopathy in HbSC disease.


Assuntos
Anemia Falciforme , Doença da Hemoglobina SC , Acidente Vascular Cerebral , Anemia Falciforme/complicações , Anemia Falciforme/epidemiologia , Feminino , Doença da Hemoglobina SC/complicações , Doença da Hemoglobina SC/epidemiologia , Humanos , Prevalência , Estudos Retrospectivos , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etiologia
6.
STAR Protoc ; 2(4): 100951, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34816129

RESUMO

Recapitulating human NEC using animal models has been insightful in dissecting the signaling pathways, immune-mediated mechanisms, genetic signatures, and the intestinal architecture of NEC. This protocol describes an in vivo murine NEC model, using hypoxia and formula containing lipopolysaccharide and enteric bacteria derived from an infant with NEC. With this mouse model, we aim to further dissect NEC pathogenesis and develop new therapeutic strategies. For complete details on the use and execution of this protocol, please refer to Mihi et al. (2021).


Assuntos
Modelos Animais de Doenças , Enterocolite Necrosante , Animais , Animais Recém-Nascidos , Fezes/química , Hipóxia/fisiopatologia , Íleo/patologia , Íleo/fisiopatologia , Lipopolissacarídeos/efeitos adversos , Camundongos
7.
Nutrients ; 13(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34684605

RESUMO

The application of metabolomics in neonatology offers an approach to investigate the complex relationship between nutrition and infant health. Characterization of the metabolome of human milk enables an investigation into nutrients that affect the neonatal metabolism and identification of dietary interventions for infants at risk of diseases such as necrotizing enterocolitis (NEC). In this study, we aimed to identify differences in the metabolome of breast milk of 48 mothers with preterm infants with NEC and non-NEC healthy controls. A minimum significant difference was observed in the human milk metabolome between the mothers of infants with NEC and mothers of healthy control infants. However, significant differences in the metabolome related to fatty acid metabolism, oligosaccharides, amino sugars, amino acids, vitamins and oxidative stress-related metabolites were observed when comparing milk from mothers with control infants of ≤1.0 kg birth weight and >1.5 kg birth weight. Understanding the functional biological features of mothers' milk that may modulate infant health is important in the future of tailored nutrition and care of the preterm newborn.


Assuntos
Recém-Nascido Prematuro/metabolismo , Metabolômica , Leite Humano/metabolismo , Mães , Aminoácidos/análise , Amino Açúcares/análise , Peso ao Nascer , Metabolismo Energético , Ácidos Graxos/análise , Feminino , Glicólise , Humanos , Recém-Nascido , Masculino , Análise Multivariada , Oligossacarídeos/análise , Estresse Oxidativo , Análise de Componente Principal
8.
Cell Rep Med ; 2(6): 100320, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34195684

RESUMO

Necrotizing enterocolitis (NEC) is a deadly intestinal inflammatory disorder that primarily affects premature infants and lacks adequate therapeutics. Interleukin (IL)-22 plays a critical role in gut barrier maintenance, promoting epithelial regeneration, and controlling intestinal inflammation in adult animal models. However, the importance of IL-22 signaling in neonates during NEC remains unknown. We investigated the role of IL-22 in the neonatal intestine under homeostatic and inflammatory conditions by using a mouse model of NEC. Our data reveal that Il22 expression in neonatal murine intestine is negligible until weaning, and both human and murine neonates lack IL-22 production during NEC. Mice deficient in IL-22 or lacking the IL-22 receptor in the intestine display a similar susceptibility to NEC, consistent with the lack of endogenous IL-22 during development. Strikingly, treatment with recombinant IL-22 during NEC substantially reduces inflammation and enhances epithelial regeneration. These findings may provide a new therapeutic strategy to attenuate NEC.


Assuntos
Enterocolite Necrosante/imunologia , Interleucinas/genética , Mucosa Intestinal/imunologia , Proteínas Recombinantes/farmacologia , Regeneração/imunologia , Animais , Animais Recém-Nascidos , Quimiocina CXCL1/genética , Quimiocina CXCL1/imunologia , Quimiocina CXCL2/genética , Quimiocina CXCL2/imunologia , Modelos Animais de Doenças , Enterocolite Necrosante/tratamento farmacológico , Enterocolite Necrosante/microbiologia , Enterocolite Necrosante/patologia , Microbioma Gastrointestinal/imunologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Recém-Nascido , Doenças do Recém-Nascido/imunologia , Doenças do Recém-Nascido/microbiologia , Doenças do Recém-Nascido/patologia , Recém-Nascido Prematuro , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucinas/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Knockout , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Receptores de Interleucina/genética , Receptores de Interleucina/imunologia , Regeneração/genética , Transdução de Sinais , Desmame , Interleucina 22
9.
Epigenomics ; 13(11): 829-844, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33905263

RESUMO

Aim: Neonatal necrotizing enterocolitis (NEC) is a deadly and unpredictable gastrointestinal disease, for which no biomarker exists. We aimed to describe the methylation patterns in stool and colon from infants with NEC. Methods: We performed a high-resolution genome-wide epigenomic analysis using solution-phase hybridization and next-generation sequencing of bisulfite-converted DNA. Results: Our data reveal significant genomic hypermethylation in NEC tissues compared with non-NEC controls. These changes were more pronounced in regions outside CpG islands and gene regulatory elements, suggesting that NEC-specific hypermethylation is not a nonspecific global phenomenon. Conclusions: This study provides evidence of a methylomic signature associated with NEC that is detectable noninvasively and provides a new opportunity for the development of a novel diagnostic method for NEC.


Assuntos
Biomarcadores , Metilação de DNA , Suscetibilidade a Doenças , Enterocolite Necrosante/etiologia , Ilhas de CpG , Enterocolite Necrosante/diagnóstico , Enterocolite Necrosante/metabolismo , Epigênese Genética , Epigenômica/métodos , Fezes , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Lactente , Recém-Nascido , Masculino , Análise de Sequência de DNA , Transdução de Sinais
10.
Immunohorizons ; 5(4): 193-209, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33906960

RESUMO

Necrotizing enterocolitis (NEC) causes significant morbidity and mortality in premature infants; therefore, the identification of therapeutic and preventative strategies against NEC remains a high priority. The ligand-dependent transcription factor aryl hydrocarbon receptor (AhR) is well known to contribute to the regulation of intestinal microbial communities and amelioration of intestinal inflammation. However, the role of AhR signaling in NEC is unclear. Experimental NEC was induced in 4-d-old wild-type mice or mice lacking AhR expression in the intestinal epithelial cells or AhR expression in CD11c+ cells (AhRΔCD11c) by subjecting animals to twice daily hypoxic stress and gavage feeding with formula supplemented with LPS and enteric bacteria. During NEC, compared with wild-type mice treated with vehicle, littermates treated with an AhR proligand, indole-3-carbinol, had reduced expression of Il1b and Marco, a scavenger receptor that mediates dendritic cell activation and the recognition and clearance of bacterial pathogens by macrophages. Furthermore, indole-3-carbinol treatment led to the downregulation of genes involved in cytokine and chemokine, as revealed by pathway enrichment analysis. AhR expression in the intestinal epithelial cells and their cre-negative mouse littermates were similarly susceptible to experimental NEC, whereas AhRΔCD11c mice with NEC exhibited heightened inflammatory responses compared with their cre-negative mouse littermates. In seeking to determine the mechanisms involved in this increased inflammatory response, we identified the Tim-4- monocyte-dependent subset of macrophages as increased in AhRΔCD11c mice compared with their cre-negative littermates. Taken together, these findings demonstrate the potential for AhR ligands as a novel immunotherapeutic approach to the management of this devastating disease.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Enterocolite Necrosante/tratamento farmacológico , Indóis/farmacologia , Mucosa Intestinal/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Enterocolite Necrosante/metabolismo , Enterocolite Necrosante/microbiologia , Enterocolite Necrosante/patologia , Humanos , Indóis/uso terapêutico , Interleucina-1beta/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
12.
Med ; 2(8): 889-891, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35590163

RESUMO

In this issue of Med, Song et al. compared 174 maternal and 177 infant microbiota after vaginal and cesarean delivery, including 30 vaginally seeded cesarean-born infants. Vaginal seeding partially corrected the microbial divergence observed between cesarean- and vaginal-born infant microbiomes. Infant microbiota resembled corresponding maternal sites, despite delivery mode or seeding.


Assuntos
Microbiota , Cesárea/efeitos adversos , Feminino , Humanos , Lactente , Microbiota/genética , Gravidez , Vagina
13.
Clin Epigenetics ; 12(1): 190, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33308304

RESUMO

BACKGROUND: Necrotizing enterocolitis (NEC) remains one of the overall leading causes of death in premature infants, and the pathogenesis is unpredictable and not well characterized. The aim of our study was to determine the molecular phenotype of NEC via transcriptomic and epithelial cell-specific epigenomic analysis, with a specific focus on DNA methylation. METHODS: Using laser capture microdissection, epithelial cell-specific methylation signatures were characterized by whole-genome bisulfite sequencing of ileal and colonic samples at the time of surgery for NEC and after NEC had healed at reanastomosis (n = 40). RNA sequencing was also performed to determine the transcriptomic profile of these samples, and a comparison was made to the methylome data. RESULTS: We found that surgical NEC has a considerable impact on the epigenome by broadly increasing DNA methylation levels, although these effects are less pronounced in genomic regions associated with the regulation of gene expression. Furthermore, NEC-related DNA methylation signatures were influenced by tissue of origin, with significant differences being noted between colon and ileum. We also identified numerous transcriptional changes in NEC and clear associations between gene expression and DNA methylation. CONCLUSIONS: We have defined the intestinal epigenomic and transcriptomic signatures during surgical NEC, which will advance our understanding of disease pathogenesis and may enable the development of novel precision medicine approaches for NEC prediction, diagnosis and phenotyping.


Assuntos
Enterocolite Necrosante/genética , Enterocolite Necrosante/cirurgia , Células Epiteliais/metabolismo , Microdissecção e Captura a Laser/métodos , Animais , Estudos de Casos e Controles , Colo/patologia , Colo/cirurgia , Ilhas de CpG/genética , Metilação de DNA , Enterocolite Necrosante/etiologia , Enterocolite Necrosante/patologia , Epigenômica/métodos , Células Epiteliais/patologia , Estudo de Associação Genômica Ampla/métodos , Humanos , Íleo/patologia , Íleo/cirurgia , Recém-Nascido , Intestinos/patologia , Microdissecção e Captura a Laser/efeitos adversos , Modelos Animais , Análise de Sequência de RNA/métodos , Transcriptoma/genética
14.
Nutrients ; 12(10)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036184

RESUMO

Preterm infants are a vulnerable population at risk of intestinal dysbiosis. The newborn microbiome is dominated by Bifidobacterium species, though abnormal microbial colonization can occur by exogenous factors such as mode of delivery, formula feeding, and exposure to antibiotics. Therefore, preterm infants are predisposed to sepsis and necrotizing enterocolitis (NEC), a fatal gastrointestinal disorder, due to an impaired intestinal barrier, immature immunity, and a dysbiotic gut microbiome. Properties of human milk serve as protection in the prevention of NEC. Human milk oligosaccharides (HMOs) and the microbiome of breast milk are immunomodulatory components that provide intestinal homeostasis through regulation of the microbiome and protection of the intestinal barrier. Enteral probiotic supplements have been trialed to evaluate their impact on establishing intestinal homeostasis. Here, we review the protective role of HMOs, probiotics, and synbiotic combinations in protecting a vulnerable population from the pathogenic features associated with necrotizing enterocolitis.


Assuntos
Disbiose/microbiologia , Disbiose/prevenção & controle , Ingestão de Alimentos/fisiologia , Enterocolite Necrosante/etiologia , Enterocolite Necrosante/prevenção & controle , Microbioma Gastrointestinal , Fenômenos Fisiológicos da Nutrição do Lactente/fisiologia , Recém-Nascido Prematuro , Intestinos/microbiologia , Leite Humano , Oligossacarídeos/administração & dosagem , Probióticos/administração & dosagem , Feminino , Homeostase , Humanos , Recém-Nascido , Masculino , Leite Humano/química , Leite Humano/microbiologia , Risco
15.
Shock ; 53(5): 596-604, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31977960

RESUMO

Neonatal shock and necrotizing enterocolitis (NEC) are leading causes of morbidity and mortality in premature infants. NEC is a life-threatening gastrointestinal illness, the precise etiology of which is not well understood, but is characterized by an immaturity of the intestinal barrier, altered function of the adaptive immune system, and intestinal dysbiosis. The complexities of NEC and shock in the neonatal population necessitate relevant clinical modeling using newborn animals that mimic the disease in human neonates to better elucidate the pathogenesis and provide an opportunity for the discovery of potential therapeutics. A wide variety of animal species-including rats, mice, piglets, and primates-have been used in developing experimental models of neonatal diseases such as NEC and shock. This review aims to highlight the immunologic differences in neonates compared with adults and provide an assessment of the advantages and drawbacks of established animal models of both NEC and shock using enteral or intraperitoneal induction of bacterial pathogens. The selection of a model has benefits unique to each type of animal species and provides individual opportunities for the development of targeted therapies. This review discusses the clinical and physiologic relevance of animal models and the insight they contribute to the complexities of the specific neonatal diseases: NEC and shock.


Assuntos
Modelos Animais de Doenças , Enterocolite Necrosante/etiologia , Doenças do Prematuro/etiologia , Choque/etiologia , Animais , Animais Recém-Nascidos , Humanos , Recém-Nascido , Recém-Nascido Prematuro
16.
Nutrients ; 12(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861718

RESUMO

Breast milk contains immunomodulating components that are beneficial to newborns during maturation of their immune system. Human breast milk composition is influenced by an infant's gestational and chronological age, lactation stage, and the mother and infant's health status. Major immunologic components in human milk, such as secretory immunoglobulin A (IgA) and growth factors, have a known role in regulating gut barrier integrity and microbial colonization, which therefore protect against the development of a life-threatening gastrointestinal illness affecting newborn infants called necrotizing enterocolitis (NEC). Breast milk is a known protective factor in the prevention of NEC when compared with feeding with commercial formula. Breast milk supplements infants with human milk oligosaccharides, leukocytes, cytokines, nitric oxide, and growth factors that attenuate inflammatory responses and provide immunological defenses to reduce the incidence of NEC. This article aims to review the variety of immunomodulating components in breast milk that protect the infant from the development of NEC.


Assuntos
Enterocolite Necrosante/prevenção & controle , Fatores Imunológicos/farmacologia , Leite Humano/química , Humanos , Fatores Imunológicos/química , Recém-Nascido , Recém-Nascido Prematuro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...