Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 587(7833): 205-209, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33106686

RESUMO

An asteroid's history is determined in large part by its strength against collisions with other objects1,2 (impact strength). Laboratory experiments on centimetre-scale meteorites3 have been extrapolated and buttressed with numerical simulations to derive the impact strength at the asteroid scale4,5. In situ evidence of impacts on boulders on airless planetary bodies has come from Apollo lunar samples6 and images of the asteroid (25143) Itokawa7. It has not yet been possible, however, to assess directly the impact strength, and thus the absolute surface age, of the boulders that constitute the building blocks of a rubble-pile asteroid. Here we report an analysis of the size and depth of craters observed on boulders on the asteroid (101955) Bennu. We show that the impact strength of metre-sized boulders is 0.44 to 1.7 megapascals, which is low compared to that of solid terrestrial materials. We infer that Bennu's metre-sized boulders record its history of impact by millimetre- to centimetre-scale objects in near-Earth space. We conclude that this population of near-Earth impactors has a size frequency distribution similar to that of metre-scale bolides and originates from the asteroidal population. Our results indicate that Bennu has been dynamically decoupled from the main asteroid belt for 1.75 ± 0.75 million years.

2.
J Geophys Res Planets ; 125(8): e2019JE006282, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32999798

RESUMO

Asteroid (101955) Bennu, a near-Earth object with a primitive carbonaceous chondrite-like composition, was observed by the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft to undergo multiple particle ejection events near perihelion between December 2018 and February 2019. The three largest events observed during this period, which all occurred 3.5 to 6 hr after local noon, placed numerous particles <10 cm on temporary orbits around Bennu. Here we examine whether these events could have been produced by sporadic meteoroid impacts using the National Aeronautics and Space Administration's (NASA) Meteoroid Engineering Model 3.0. Most projectiles that impact Bennu come from nearly isotropic or Jupiter-family comets and have evolved toward the Sun by Poynting-Robertson drag. We find that 7,000-J impacts on Bennu occur with a biweekly cadence near perihelion, with a preference to strike in the late afternoon (~6 pm local time). This timing matches observations. Crater scaling laws also indicate that these impact energies can reproduce the sizes and masses of the largest observed particles, provided the surface has the cohesive properties of weak, porous materials. Bennu's ejection events could be caused by the same kinds of meteoroid impacts that created the Moon's asymmetric debris cloud observed by the Lunar Atmosphere and Dust Environment Explorer (LADEE). Our findings also suggest that fewer ejection events should take place as Bennu moves further away from the Sun, a result that can be tested with future observations.

3.
Earth Space Sci ; 7(9): e2019EA000937, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33043099

RESUMO

The OSIRIS-REx mission has observed multiple instances of particles being ejected from the surface of near-Earth asteroid (101955) Bennu. The ability to quickly identify the particle trajectories and origins is necessary following a particle ejection event. Using proven initial orbit determination techniques, we can rapidly estimate particle trajectories and ejection locations. We present current results pertaining to the identification of particle tracks, an evaluation of the estimated orbits and the excess velocity necessary to induce the particle ejection from the surface, and the uncertainty quantification of the ejection location. We estimate energies per particle ranging from 0.03 to 11.03 mJ for the largest analyzed events and velocities ranging from 5 to 90 cm/s, though we exclude the highest-velocity particles in this technique. We estimate ejection times for eight events and constrain six of the analyzed ejection events to have occurred between about 16:30 and 19:00 local solar time, with the largest events occurring between 16:30 and 18:05.

4.
Sci Adv ; 6(41)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33033037

RESUMO

Thermal inertia and surface roughness are proxies for the physical characteristics of planetary surfaces. Global maps of these two properties distinguish the boulder population on near-Earth asteroid (NEA) (101955) Bennu into two types that differ in strength, and both have lower thermal inertia than expected for boulders and meteorites. Neither has strongly temperature-dependent thermal properties. The weaker boulder type probably would not survive atmospheric entry and thus may not be represented in the meteorite collection. The maps also show a high-thermal inertia band at Bennu's equator, which might be explained by processes such as compaction or strength sorting during mass movement, but these explanations are not wholly consistent with other data. Our findings imply that other C-complex NEAs likely have boulders similar to those on Bennu rather than finer-particulate regoliths. A tentative correlation between albedo and thermal inertia of C-complex NEAs may be due to relative abundances of boulder types.

5.
Sci Adv ; 6(41)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33033036

RESUMO

The gravity field of a small body provides insight into its internal mass distribution. We used two approaches to measure the gravity field of the rubble-pile asteroid (101955) Bennu: (i) tracking and modeling the spacecraft in orbit about the asteroid and (ii) tracking and modeling pebble-sized particles naturally ejected from Bennu's surface into sustained orbits. These approaches yield statistically consistent results up to degree and order 3, with the particle-based field being statistically significant up to degree and order 9. Comparisons with a constant-density shape model show that Bennu has a heterogeneous mass distribution. These deviations can be modeled with lower densities at Bennu's equatorial bulge and center. The lower-density equator is consistent with recent migration and redistribution of material. The lower-density center is consistent with a past period of rapid rotation, either from a previous Yarkovsky-O'Keefe-Radzievskii-Paddack cycle or arising during Bennu's accretion following the disruption of its parent body.

6.
Sci Adv ; 6(41)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33033038

RESUMO

We investigate the shape of near-Earth asteroid (101955) Bennu by constructing a high-resolution (20 cm) global digital terrain model from laser altimeter data. By modeling the northern and southern hemispheres separately, we find that longitudinal ridges previously identified in the north extend into the south but are obscured there by surface material. In the south, more numerous large boulders effectively retain surface materials and imply a higher average strength at depth to support them. The north has fewer large boulders and more evidence of boulder dynamics (toppling and downslope movement) and surface flow. These factors result in Bennu's southern hemisphere being rounder and smoother, whereas its northern hemisphere has higher slopes and a less regular shape. We infer an originally asymmetric distribution of large boulders followed by a partial disruption, leading to wedge formation in Bennu's history.

7.
Science ; 370(6517)2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33033157

RESUMO

Visible-wavelength color and reflectance provide information about the geologic history of planetary surfaces. Here we present multispectral images (0.44 to 0.89 micrometers) of near-Earth asteroid (101955) Bennu. The surface has variable colors overlain on a moderately blue global terrain. Two primary boulder types are distinguishable by their reflectance and texture. Space weathering of Bennu surface materials does not simply progress from red to blue (or vice versa). Instead, freshly exposed, redder surfaces initially brighten in the near-ultraviolet region (i.e., become bluer at shorter wavelengths), then brighten in the visible to near-infrared region, leading to Bennu's moderately blue average color. Craters indicate that the time scale of these color changes is ~105 years. We attribute the reflectance and color variation to a combination of primordial heterogeneity and varying exposure ages.

8.
J Geophys Res Planets ; 125(3): e2019JE006284, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32714726

RESUMO

This paper explores the implications of the observed Bennu particle ejection events for that asteroid's spin rate and orbit evolution, which could complicate interpretation of the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) and Yarkovsky effects on this body's spin rate and orbital evolution. Based on current estimates of particle ejection rates, we find that the overall contribution to Bennu's spin and orbital drift is small or negligible as compared to the Yarkovsky and YORP effects. However, if there is a large unseen component of smaller mass ejections or a strong directionality in the ejection events, it could constitute a significant contribution that could mask the overall YORP effect. This means that the YORP effect may be stronger than currently assumed. The analysis is generalized so that the particle ejection effect can be assessed for other bodies that may be subject to similar mass loss events. Further, our model can be modified to address different potential mechanisms of particle ejection, which are a topic of ongoing study.

9.
Nat Astron ; 3(4): 332-340, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31360777

RESUMO

Early spectral data from the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission reveal evidence for abundant hydrated minerals on the surface of near-Earth asteroid (101955) Bennu in the form of a near-infrared absorption near 2.7 µm and thermal infrared spectral features that are most similar to those of aqueously altered CM carbonaceous chondrites. We observe these spectral features across the surface of Bennu, and there is no evidence of substantial rotational variability at the spatial scales of tens to hundreds of meters observed to date. In the visible and near-infrared (0.4 to 2.4 µm) Bennu's spectrum appears featureless and with a blue (negative) slope, confirming previous ground-based observations. Bennu may represent a class of objects that could have brought volatiles and organic chemistry to Earth.

10.
Nat Geosci ; 12(4): 247-252, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31080497

RESUMO

The shapes of asteroids reflect interplay between their interior properties and the processes responsible for their formation and evolution as they journey through the Solar System. Prior to the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) mission, Earth-based radar imaging gave an overview of (101955) Bennu's shape. Here, we construct a high-resolution shape model from OSIRIS-REx images. We find that Bennu's top-like shape, considerable macroporosity, and prominent surface boulders suggest that it is a rubble pile. High-standing, north-south ridges that extend from pole to pole, many long grooves, and surface mass wasting indicate some low levels of internal friction and/or cohesion. Our shape model indicates that, similar to other top-shaped asteroids, Bennu formed by reaccumulation and underwent past periods of fast spin leading to its current shape. Today, Bennu might follow a different evolutionary pathway, with interior stiffness permitting surface cracking and mass wasting.

11.
Nat Commun ; 10(1): 1291, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890725

RESUMO

During its approach to asteroid (101955) Bennu, NASA's Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft surveyed Bennu's immediate environment, photometric properties, and rotation state. Discovery of a dusty environment, a natural satellite, or unexpected asteroid characteristics would have had consequences for the mission's safety and observation strategy. Here we show that spacecraft observations during this period were highly sensitive to satellites (sub-meter scale) but reveal none, although later navigational images indicate that further investigation is needed. We constrain average dust production in September 2018 from Bennu's surface to an upper limit of 150 g s-1 averaged over 34 min. Bennu's disk-integrated photometric phase function validates measurements from the pre-encounter astronomical campaign. We demonstrate that Bennu's rotation rate is accelerating continuously at 3.63 ± 0.52 × 10-6 degrees day-2, likely due to the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, with evolutionary implications.

12.
Nature ; 568(7750): 55-60, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30890786

RESUMO

NASA'S Origins, Spectral Interpretation, Resource Identification and Security-Regolith Explorer (OSIRIS-REx) spacecraft recently arrived at the near-Earth asteroid (101955) Bennu, a primitive body that represents the objects that may have brought prebiotic molecules and volatiles such as water to Earth1. Bennu is a low-albedo B-type asteroid2 that has been linked to organic-rich hydrated carbonaceous chondrites3. Such meteorites are altered by ejection from their parent body and contaminated by atmospheric entry and terrestrial microbes. Therefore, the primary mission objective is to return a sample of Bennu to Earth that is pristine-that is, not affected by these processes4. The OSIRIS-REx spacecraft carries a sophisticated suite of instruments to characterize Bennu's global properties, support the selection of a sampling site and document that site at a sub-centimetre scale5-11. Here we consider early OSIRIS-REx observations of Bennu to understand how the asteroid's properties compare to pre-encounter expectations and to assess the prospects for sample return. The bulk composition of Bennu appears to be hydrated and volatile-rich, as expected. However, in contrast to pre-encounter modelling of Bennu's thermal inertia12 and radar polarization ratios13-which indicated a generally smooth surface covered by centimetre-scale particles-resolved imaging reveals an unexpected surficial diversity. The albedo, texture, particle size and roughness are beyond the spacecraft design specifications. On the basis of our pre-encounter knowledge, we developed a sampling strategy to target 50-metre-diameter patches of loose regolith with grain sizes smaller than two centimetres4. We observe only a small number of apparently hazard-free regions, of the order of 5 to 20 metres in extent, the sampling of which poses a substantial challenge to mission success.


Assuntos
Meio Ambiente Extraterreno/química , Planetas Menores , Voo Espacial , Exobiologia , Origem da Vida , Voo Espacial/instrumentação , Propriedades de Superfície
13.
Nat Astron ; 3(4): 352-361, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32601603

RESUMO

The top-shape morphology of asteroid (101955) Bennu is commonly found among fast-spinning asteroids and binary asteroid primaries, and might have contributed significantly to binary asteroid formation. Yet a detailed geophysical analysis of this morphology for a fast-spinning asteroid has not been possible prior to the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission. Combining the measured Bennu mass and shape obtained during the Preliminary Survey phase of OSIRIS-REx, we find a significant transition in Bennu's surface slopes within its rotational Roche lobe, defined as the region where material is energetically trapped to the surface. As the intersection of the rotational Roche lobe with Bennu's surface has been most recently migrating towards its equator (given Bennu's increasing spin rate), we infer that Bennu's surface slopes have been changing across its surface within the last million years. We also find evidence for substantial density heterogeneity within this body, suggesting that its interior has a distribution of voids and boulders. The presence of such heterogeneity and Bennu's top-shape is consistent with spin-induced failure at some point in its past, although the manner of its failure cannot be determined yet. Future measurements by the OSIRIS-REx spacecraft will give additional insights and may resolve questions regarding the formation and evolution of Bennu's top-shape morphology and its link to the formation of binary asteroids.

14.
Science ; 314(5803): 1280-3, 2006 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-17038588

RESUMO

Dynamical simulations of the coupled rotational and orbital dynamics of binary near-Earth asteroid 66391 (1999 KW4) suggest that it is excited as a result of perturbations from the Sun during perihelion passages. Excitation of the mutual orbit will stimulate complex fluctuations in the orbit and rotation of both components, inducing the attitude of the smaller component to have large variation within some orbits and to hardly vary within others. The primary's proximity to its rotational stability limit suggests an origin from spin-up and disruption of a loosely bound precursor within the past million years.

15.
Science ; 296(5565): 132-6, 2002 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-11935024

RESUMO

Integration of the orbit of asteroid (29075) 1950 DA, which is based on radar and optical measurements spanning 51 years, reveals a 20-minute interval in March 2880 when there could be a nonnegligible probability of the 1-kilometer object colliding with Earth. Trajectory knowledge remains accurate until then because of extensive astrometric data, an inclined orbit geometry that reduces in-plane perturbations, and an orbit uncertainty space modulated by gravitational resonance. The approach distance uncertainty in 2880 is determined primarily by uncertainty in the accelerations arising from thermal re-radiation of solar energy absorbed by the asteroid. Those accelerations depend on the spin axis, composition, and surface properties of the asteroid, so that refining the collision probability may require direct inspection by a spacecraft.

16.
Science ; 296(5572): 1445-8, 2002 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-11951001

RESUMO

Radar images of near-Earth asteroid 2000 DP107 show that it is composed of an approximately 800-meter-diameter primary and an approximately 300-meter-diameter secondary revolving around their common center of mass. The orbital period of 1.755 +/- 0.007 days and semimajor axis of 2620 +/- 160 meters constrain the total mass of the system to 4.6 +/- 0.5 x 10(11) kilograms and the bulk density of the primary to 1.7 +/- 1.1 grams per cubic centimeter. This system and other binary near-Earth asteroids have spheroidal primaries spinning near the breakup point for strengthless bodies, suggesting that the binaries formed by spin-up and fission, probably as a result of tidal disruption during close planetary encounters. About 16% of near-Earth asteroids larger than 200 meters in diameter may be binary systems.

17.
Can J Oncol ; 6 Suppl 1: 48-53, 1996 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-8853538

RESUMO

Brain metastases (BRM) are common complications of malignancy, frequently associated with disability and death. Clinical trials have addressed a few of the issues arising from treatment options for BRM. Phase III trials have shown superior survival for patients with solitary resectable BRM (SRBRM) when palliative radiation treatment (RT) to the brain is preceded by resection compared to brain RT alone, but no trial has explored resection plus brain RT compared to resection alone. One Phase III trial in patients with solitary unresected BRM comparing lower to higher doses of RT has shown a small survival advantage with higher-dose radiotherapy. All other trials, however, comparing different radiation doses and fractionation schedules have failed to indicate improved outcomes from treatment more intense than 2000 cGy in 5 fractions over 1 week (in any subset of patients with unresected BRM). A panel of radiation oncologists and medical oncologists discussed a literature review and results of Phase III trials of therapy for BRM. The panel was instructed to identify from these trials any evidence for the efficacy, indications, toxicity and fractionation of palliative RT for BRM. The panel concluded that unresected BRM is a possible indication for brain RT. The panel concluded that the benefits and toxicities of brain RT for unresected BRM are not characterized adequately to allow a stronger recommendation. The panel concluded that there is no evidence for superiority for any dose or schedule of brain RT for BRM more protracted or intense than 2000 cGy in 5 fractions over one week. The panel recommended further study in order to characterize the benefits and toxicities of brain RT for unresectable BRM. The panel considered the potential value of conducting a Phase III trial comparing palliative care and strategies that included brain RT to the same strategies excluding brain RT; the panel did not, however, reach consensus on the feasibility of such a trial.


Assuntos
Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Cuidados Paliativos , Ensaios Clínicos como Assunto , Humanos , Dosagem Radioterapêutica , Análise de Sobrevida
18.
Clin Oncol (R Coll Radiol) ; 6(1): 14-23, 1994.
Artigo em Inglês | MEDLINE | ID: mdl-8172829

RESUMO

We conducted a clinical audit of the recurrence-free rates and absolute survival of 146 patients who presented with T1-T3 glottic cancer and received primary radiotherapy treatment at the Nova Scotia Cancer Centre between 1984 and 1990. The outcomes are compared with a review of published results from other centres. We used stage T3 glottic cancer as an example to illustrate concepts of effectiveness research which are used to determine at what level interventions operate in the day to day practice of medicine. The actuarial recurrence-free rates at 5 years are: T1 91%, T2 73%, and T3 44%. The actuarial absolute survival rates are: T1 84%, T2 68%, and T3 52%. Effectiveness research may utilize efficacy research, clinical audit, quality of life assessment and decision making theory. Its objective is to aid the implementation of appropriate clinical management for specific individuals and defined communities. Expert computer systems may be necessary to synthesize the data and to enhance communication and decision making.


Assuntos
Glote/patologia , Neoplasias Laríngeas/radioterapia , Auditoria Médica , Resultado do Tratamento , Idoso , Radioisótopos de Cobalto/economia , Radioisótopos de Cobalto/uso terapêutico , Custos e Análise de Custo , Feminino , Seguimentos , Humanos , Neoplasias Laríngeas/patologia , Neoplasias Laríngeas/cirurgia , Laringectomia/economia , Masculino , Recidiva Local de Neoplasia/prevenção & controle , Estadiamento de Neoplasias , Nova Escócia , Qualidade de Vida , Dosagem Radioterapêutica , Radioterapia de Alta Energia/economia , Estudos Retrospectivos , Terapia de Salvação/economia , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...