Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurology ; 101(15): e1567-e1571, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37460232

RESUMO

Pathogenic biallelic variants in ACO2, which encodes the enzyme mitochondrial aconitase, are associated with the very rare diagnosis of ACO2-related infantile cerebellar retinal degeneration (OMIM 614559). We describe the diagnostic odyssey of a 4-year-old female patient with profound global developmental delays, microcephaly, severe hypotonia, retinal dystrophy, seizures, and progressive cerebellar atrophy. Whole-exome sequencing revealed 2 variants in ACO2; c.2105_2106delAG (p.Gln702ArgfsX9), a likely pathogenic variant, and c.988C>T (p.Pro330Ser) which was classified as a variant of uncertain significance (VUS). While the VUS was confirmed to be maternally inherited, the phase of the other variant could not be confirmed due to lack of a paternal sample. Functional biochemical studies were performed on a research basis to clarify the interpretation of the VUS, which enabled clinical confirmation of the diagnosis of ACO2-related infantile cerebellar retinal degeneration for our patient.


Assuntos
Microcefalia , Malformações do Sistema Nervoso , Distrofias Retinianas , Feminino , Humanos , Criança , Pré-Escolar , Aconitato Hidratase , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Atrofia
2.
Nutrients ; 13(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34444756

RESUMO

The central integration of peripheral neural signals is one mechanism by which systemic energy homeostasis is regulated. Previously, increased acute food intake following the chemical reduction of hepatic fatty acid oxidation and ATP levels was prevented by common hepatic branch vagotomy (HBV). However, possible offsite actions of the chemical compounds confound the precise role of liver energy metabolism. Herein, we used a hepatocyte PGC1a heterozygous (LPGC1a) mouse model, with associated reductions in mitochondrial fatty acid oxidation and respiratory capacity, to assess the role of liver energy metabolism in systemic energy homeostasis. LPGC1a male, but not female, mice had a 70% greater high-fat/high-sucrose (HFHS) diet-induced weight gain compared to wildtype (WT) mice (p < 0.05). The greater weight gain was associated with altered feeding behavior and lower activity energy expenditure during the HFHS diet in LPGC1a males. WT and LPGC1a mice underwent sham surgery or HBV to assess whether vagal signaling was involved in the HFHS-induced weight gain of male LPGC1a mice. HBV increased HFHS-induced weight gain (85%, p < 0.05) in male WT mice, but not LPGC1a mice. These data demonstrate a sex-specific role of reduced liver energy metabolism in acute diet-induced weight gain, and the need for a more nuanced assessment of the role of vagal signaling in short-term diet-induced weight gain.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Modelos Animais de Doenças , Ingestão de Alimentos , Metabolismo Energético , Ácidos Graxos/metabolismo , Feminino , Homeostase , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Sacarose/metabolismo , Nervo Vago/metabolismo , Aumento de Peso
3.
Obesity (Silver Spring) ; 28(10): 1922-1931, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32857478

RESUMO

OBJECTIVE: The aim of this study was to test whether increased energy expenditure (EE), independent of physical activity, reduces acute diet-induced weight gain through tighter coupling of energy intake to energy demand and enhanced metabolic adaptations. METHODS: Indirect calorimetry and quantitative magnetic resonance imaging were used to assess energy metabolism and body composition during 7-day high-fat/high-sucrose (HFHS) feeding in male and female mice housed at divergent temperatures (20°C vs. 30°C). RESULTS: As previously observed, 30°C housing resulted in lower total EE and energy intake compared with 20°C mice regardless of sex. Interestingly, housing temperature did not impact HFHS-induced weight gain in females, whereas 30°C male mice gained more weight than 20°C males. Energy intake coupling to EE during HFHS feeding was greater in 20°C versus 30°C housing, with females greater at both temperatures. Fat mass gain was greater in 30°C mice compared with 20°C mice, whereas females gained less fat mass than males. Strikingly, female 20°C mice gained considerably more fat-free mass than 30°C mice. Reduced fat mass gain was associated with greater metabolic flexibility to HFHS, whereas fat-free mass gain was associated with diet-induced adaptive thermogenesis. CONCLUSIONS: These data reveal that EE and sex interact to impact energy homeostasis and metabolic adaptation to acute HFHS feeding, altering weight gain and body composition change.


Assuntos
Metabolismo Energético/fisiologia , Animais , Dieta Hiperlipídica , Ingestão de Energia , Feminino , Abrigo para Animais , Masculino , Camundongos , Fatores Sexuais , Temperatura , Termogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA