Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(10): e47779, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23094084

RESUMO

Rabbit pups ingest food, in this case milk, once a day with circadian periodicity and are a natural model of food anticipatory activity. During nursing, several sensory systems receive information about properties of the food, one of them being the olfactory system, which has received little attention in relation to synchronization by food. In addition, the olfactory bulb has a circadian pacemaker that exhibits rhythms independently of the suprachiasmatic nucleus, but the biological functions of these rhythms are largely unknown. In the present contribution, we hypothesized that circadian suckling of milk synchronizes rhythms in the olfactory bulb. To this aim we explored by immunohistochemistry, rhythms of FOS and PER1 proteins, as indicators of activation and reporter of oscillations, respectively, through a complete 24-h cycle in periglomerular, mitral and granular cell layers of both the main and the accessory olfactory bulb. Subjects were 7-day-old rabbit pups scheduled to nurse during the night (02:00 h) or day (10:00 h), and also fasted subjects, to explore the possible persistence of oscillations. In the three layers of the main olfactory bulb, FOS was high at time of nursing, then further increased 1.5 h afterward, and then decreased to increase again in advance of the next nursing bout. This pattern persisted, without the postprandial increase, in fasted subjects with a shift in subjects nursed at 02:00. PER1 was increased 2-8 h after nursing and this increase persisted in most cell layers, with a shift, in fasted subjects. In the accessory olfactory bulb we only observed a consistent pattern of FOS expression in the mitral cell layer of nursed subjects, similar to that of the main olfactory bulb. We conclude that the main olfactory bulb is synchronized during milk ingestion, but during fasting its oscillations perhaps are modulated by the suprachiasmatic nucleus, as proposed for rodents.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Comportamento Alimentar/fisiologia , Bulbo Olfatório/fisiologia , Proteínas Circadianas Period/genética , Proteínas Proto-Oncogênicas c-fos/genética , Animais , Animais Recém-Nascidos , Animais Lactentes , Jejum , Alimentos , Regulação da Expressão Gênica , Atividade Motora/fisiologia , Proteínas Circadianas Period/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Coelhos , Núcleo Supraquiasmático/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...