Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Virol ; 168(4): 124, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36988739

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has caused more than 760 million cases and over 6.8 million deaths as of March 2023. Vaccination has been the main strategy used to contain the spread of the virus and to prevent hospitalizations and deaths. Currently, two mRNA-based vaccines and one adenovirus-vectored vaccine have been approved and are available for use in the U.S. population. The versatility, low cost, and rapid production of DNA vaccines provide important advantages over other platforms. Additionally, DNA vaccines efficiently induce both B- and T-cell responses by expressing the antigen within transfected host cells, and the antigen, after being processed into peptides, can associate with MHC class I or II of antigen-presenting cells (APCs) to stimulate different T cell responses. However, the efficiency of DNA vaccination needs to be improved for use in humans. Importantly, in vivo DNA delivery combined with electroporation (EP) has been used successfully in the field of veterinary oncology, resulting in high rates of response after electrochemotherapy. Here, we evaluate the safety, immunogenicity, and protective efficacy of a novel linear SARS-CoV-2 DNA vaccine candidate delivered by intramuscular injection followed by electroporation (Vet-ePorator™) in ferrets. The linear SARS-CoV-2 DNA vaccine candidate did not cause unexpected side effects. Additionally, the vaccine elicited neutralizing antibodies and T cell responses on day 42 post-immunization using a low dose of the linear DNA construct in a prime-boost regimen. Most importantly, vaccination significantly reduced shedding of infectious SARS-CoV-2 through oral and nasal secretions in a ferret model.


Assuntos
COVID-19 , Vacinas de DNA , Vacinas Virais , Humanos , Animais , Vacinas contra COVID-19 , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinas de DNA/genética , Furões , Eliminação de Partículas Virais , Anticorpos Antivirais , Anticorpos Neutralizantes , DNA , Glicoproteína da Espícula de Coronavírus/genética , Imunogenicidade da Vacina
2.
J Virol ; 93(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31434730

RESUMO

Senecavirus A (SVA) is a picornavirus that causes acute vesicular disease (VD), that is clinically indistinguishable from foot-and-mouth disease (FMD), in pigs. Notably, SVA RNA has been detected in lymphoid tissues of infected animals several weeks following resolution of the clinical disease, suggesting that the virus may persist in select host tissues. Here, we investigated the occurrence of persistent SVA infection and the contribution of stressors (transportation, immunosuppression, or parturition) to acute disease and recrudescence from persistent SVA infection. Our results show that transportation stress leads to a slight increase in disease severity following infection. During persistence, transportation, immunosuppression, and parturition stressors did not lead to overt/recrudescent clinical disease, but intermittent viremia and virus shedding were detected up to day 60 postinfection (p.i.) in all treatment groups following stress stimulation. Notably, real-time PCR and in situ hybridization (ISH) assays confirmed that the tonsil harbors SVA RNA during the persistent phase of infection. Immunofluorescence assays (IFA) specific for double-stranded RNA (dsRNA) demonstrated the presence of double-stranded viral RNA in tonsillar cells. Most importantly, infectious SVA was isolated from the tonsil of two animals on day 60 p.i., confirming the occurrence of carrier animals following SVA infection. These findings were supported by the fact that contact piglets (11/44) born to persistently infected sows were infected by SVA, demonstrating successful transmission of the virus from carrier sows to contact piglets. Results here confirm the establishment of persistent infection by SVA and demonstrate successful transmission of the virus from persistently infected animals.IMPORTANCE Persistent viral infections have significant implications for disease control strategies. Previous studies demonstrated the persistence of SVA RNA in the tonsil of experimentally or naturally infected animals long after resolution of the clinical disease. Here, we showed that SVA establishes persistent infection in SVA-infected animals, with the tonsil serving as one of the sites of virus persistence. Importantly, persistently infected carrier animals shedding SVA in oral and nasal secretions or feces can serve as sources of infection to other susceptible animals, as evidenced by successful transmission of SVA from persistently infected sows to contact piglets. These findings unveil an important aspect of SVA infection biology, suggesting that persistently infected pigs may function as reservoirs for SVA.


Assuntos
Portador Sadio/veterinária , Transmissão Vertical de Doenças Infecciosas/veterinária , Infecções por Picornaviridae/veterinária , Picornaviridae/patogenicidade , Doenças dos Suínos/transmissão , Animais , Portador Sadio/patologia , Portador Sadio/transmissão , Portador Sadio/virologia , Doença Crônica , Feminino , Tonsila Palatina/virologia , Infecções por Picornaviridae/patologia , Infecções por Picornaviridae/transmissão , Infecções por Picornaviridae/virologia , Recidiva , Estresse Fisiológico , Suínos , Doenças dos Suínos/patologia , Doenças dos Suínos/virologia , Viremia/patologia , Viremia/transmissão , Viremia/veterinária , Viremia/virologia , Eliminação de Partículas Virais
3.
Res Vet Sci ; 99: 53-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25687815

RESUMO

Leptospirosis is an infectious disease caused by the bacterium Leptospira spp. In goats, the productive impact of leptospirosis is not well known and totally unknown in Santa Catarina (SC), Brazil. This study aimed to investigate leptospirosis seroprevalence and its risk factors in goats in the west side of SC. A total of 654 blood samples were analyzed using the microscopic agglutination technique and 35.47% (232) of the animals were seropositives. Except for serogroup Autumnalis, positive samples for all other serogroups were found as follows: Sejroe (Hardjo, Wolffi), Grippotyphosa (Grippotyphosa), Canicola (Canicola), Icterohaemorrhagiae (Icterohaemorrhagiae, Copenhageni), Australis (Australis, Bratislava) and Pomona (Pomona). The contact among sheep and goats, and the addition of concentrate as food supplement were found to be risk factors for leptospirosis. Based on these results, we conclude that there is a high occurrence of anti-Leptospira antibodies in goats in the Western part of Santa Catarina State.


Assuntos
Anticorpos Antibacterianos/sangue , Doenças das Cabras/epidemiologia , Doenças das Cabras/imunologia , Leptospira interrogans/imunologia , Leptospirose/veterinária , Animais , Brasil/epidemiologia , Cabras , Leptospirose/epidemiologia , Leptospirose/imunologia , Fatores de Risco , Estudos Soroepidemiológicos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...