Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Cancer Res Clin Oncol ; 149(8): 5007-5023, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36319895

RESUMO

PURPOSE: Sonodynamic therapy (SDT) is emerging as a cancer treatment alternative with significant advantages over conventional therapies, including its minimally invasive and site-specific nature, its radical antitumour efficacy with minimal side effects, and its capacity to raise an antitumour immune response. The study explores the efficacy of SDT in combination with nanotechnology against pancreatic ductal adenocarcinoma. METHODS: A nanoparticulate formulation (HPNP) based on a cathepsin B-degradable glutamate-tyrosine co-polymer that carries hematoporphyrin was used in this study for the SDT-based treatment of PDAC. Cathepsin B levels in BxPC-3 and PANC-1 cells were correlated to cellular uptake of HPNP. The HPNP efficiency to induce a sonodynamic effect at varying ultrasound parameters, and at different oxygenation and pH conditions, was investigated. The biodistribution, tumour accumulation profile, and antitumour efficacy of HPNP in SDT were examined in immunocompetent mice carrying bilateral ectopic murine pancreatic tumours. The immune response profile of excised tumour tissues was also examined. RESULTS: The HPNP formulation significantly improved cellular uptake of hematoporphyrin for both BxPC-3 and PANC-1 cells, while increase of cellular uptake was positively correlated in PANC-1 cells. There was a clear SDT-induced cytotoxicity at the ultrasound conditions tested, and the treatment impaired the capacity of both BxPC-3 and PANC-1 cells to form colonies. The overall acoustic energy and pulse length, rather than the power density, were key in eliciting the effects observed in vitro. The SDT treatment in combination with HPNP resulted in 21% and 27% reduction of the target and off-target tumour volumes, respectively, within 24 h. A single SDT treatment elicited an antitumour effect that was characterized by an SDT-induced decrease in immunosuppressive T cell phenotypes. CONCLUSION: SDT has significant potential to serve as a monotherapy or adjunctive treatment for inoperable or borderline resectable PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Terapia por Ultrassom , Animais , Camundongos , Catepsina B , Terapia por Ultrassom/métodos , Distribuição Tecidual , Neoplasias Pancreáticas/terapia , Hematoporfirinas/farmacologia , Carcinoma Ductal Pancreático/terapia , Nanotecnologia , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio , Neoplasias Pancreáticas
3.
Eur J Pharm Biopharm ; 163: 49-59, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33798727

RESUMO

Sonodynamic therapy (SDT) is an emerging stimulus-responsive approach for the targeted treatment of solid tumours. However, its ability to generate stimulus-responsive cytotoxic reactive oxygen species (ROS), is compromised by tumour hypoxia. Here we describe a robust means of preparing a pH-sensitive polymethacrylate-coated CaO2 nanoparticle that is capable of transiently alleviating tumour hypoxia. Systemic administration of particles to animals bearing human xenograft BxPC3 pancreatic tumours increases oxygen partial pressures (PO2) to 20-50 mmHg for over 40 min. RT-qPCR analysis of expression of selected tumour marker genes in treated animals suggests that the transient production of oxygen is sufficient to elicit effects at a molecular genetic level. Using particles labelled with the near infra-red (nIR) fluorescent dye, indocyanine green, selective uptake of particles by tumours was observed. Systemic administration of particles containing Rose Bengal (RB) at concentrations of 0.1 mg/mg of particles are capable of eliciting nanoparticle-induced, SDT-mediated antitumour effects using the BxPC3 human pancreatic tumour model in immuno-compromised mice. Additionally, a potent abscopal effect was observed in off-target tumours in a syngeneic murine bilateral tumour model for pancreatic cancer and an increase in tumour cytotoxic T cells (CD8+) and a decrease in immunosuppressive tumour regulatory T cells [Treg (CD4+, FoxP3+)] was observed in both target and off-target tumours in SDT treated animals. We suggest that this approach offers significant potential in the treatment of both focal and disseminated (metastatic) pancreatic cancer.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/química , Neoplasias Pancreáticas/tratamento farmacológico , Fotoquimioterapia/métodos , Terapia por Ultrassom/métodos , Animais , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Microbolhas , Nanopartículas/química , Oxigênio/farmacocinética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Espécies Reativas de Oxigênio/metabolismo , Rosa Bengala/administração & dosagem , Rosa Bengala/farmacocinética , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Control Release ; 329: 76-86, 2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33245955

RESUMO

Nano-formulations that are responsive to tumour-related and externally-applied stimuli can offer improved, site-specific antitumor effects, and can improve the efficacy of conventional therapeutic agents. Here, we describe the performance of a novel stimulus-responsive nanoparticulate platform for the targeted treatment of prostate cancer using sonodynamic therapy (SDT). The nanoparticles were prepared by self-assembly of poly(L-glutamic acid-L-tyrosine) co-polymer with hematoporphyrin. The nanoparticulate formulation was characterized with respect to particle size, morphology, surface charge and singlet oxygen production during ultrasound exposure. The response of the formulation to the presence of cathepsin B, a proteolytic enzyme that is overexpressed and secreted in the tumour microenvironment of many solid tumours, was assessed. Our results showed that digestion with cathepsin B led to nanoparticle size reduction. In the absence of ultrasound, the formulation exhibited greater toxicity at acidic pH than at physiological pH, using the human prostate cells lines LNCaP and PC3 as targets. Nanoparticle cellular uptake was enhanced at acidic pH - a condition that was also associated with greater cathepsin B production. Nanoparticles exhibited enhanced ultrasound-induced cytotoxicity against both prostate cancer cell lines. Subsequent proof-of-concept in vivo studies demonstrated that, when ectopic human xenograft LNCaP tumours in SCID mice were treated with SDT using the systemically-administered nanoparticulate formulation at a single dose, tumour volumes decreased by up to 64% within 24 h. No adverse effects were observed in the nanoparticle-treated mice and their body weight remained stable. The potential of this novel formulation to deliver safe and effective treatment of prostate cancer is discussed.


Assuntos
Nanopartículas , Neoplasias da Próstata , Animais , Catepsina B , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos SCID , Microambiente Tumoral
5.
Eur J Pharm Biopharm ; 139: 224-231, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30959180

RESUMO

Mastectomy is a common surgical treatment used in the management of breast cancer but has associated physical and psychological consequences for the patient. Breast conservation surgery (BCS) is an alternative to mastectomy but is only possible when the tumour is of an appropriate size. Neo-adjuvant chemotherapy has been successfully used to downstage tumours and increase the number of patients eligible for BCS. However, the chemotherapies used in this approach are non-targeted and often result in significant side effects to the patient. In this manuscript, we evaluate the potential of ultrasound targeted microbubble destruction (UTMD) to deliver Rose Bengal-mediated sonodynamic therapy (SDT) in combination with paclitaxel (PTX) and doxorubicin (Dox) chemotherapy as a potential treatment for breast cancer. Efficacy of the combined treatment was determined in a three-dimensional (3D) spheroid model of human breast cancer and in a murine model of the disease bearing subcutaneous MCF-7 tumours. The results demonstrated a significant reduction in both the cell viability of spheroids and tumour volume following treatment with the drug loaded microbubbles and ultrasound compared to targets treated with the drug loaded microbubbles alone or a Cremophor EL suspension of PTX and Dox. In addition, the weight of animals that received the microbubble treatment was unchanged throughout the study while a reduction of 12.1% was observed for animals treated with a Cremophor suspension of PTX/Dox. These results suggest that UTMD-mediated chemo-sonodynamic therapy is an efficacious and well tolerated approach for the treatment of breast cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias da Mama/terapia , Sistemas de Liberação de Medicamentos/métodos , Rosa Bengala/administração & dosagem , Terapia por Ultrassom/métodos , Animais , Terapia Combinada/métodos , Doxorrubicina/administração & dosagem , Feminino , Humanos , Células MCF-7 , Mastectomia Segmentar , Camundongos , Camundongos SCID , Microbolhas , Terapia Neoadjuvante/métodos , Paclitaxel/administração & dosagem , Ondas Ultrassônicas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Control Release ; 262: 192-200, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28764995

RESUMO

Magnetically responsive microbubbles (MagMBs), consisting of an oxygen gas core and a phospholipid coating functionalised with Rose Bengal (RB) and/or 5-fluorouracil (5-FU), were assessed as a delivery vehicle for the targeted treatment of pancreatic cancer using combined antimetabolite and sonodynamic therapy (SDT). MagMBs delivering the combined 5-FU/SDT treatment produced a reduction in cell viability of over 50% when tested against a panel of four pancreatic cancer cell lines in vitro. Intravenous administration of the MagMBs to mice bearing orthotopic human xenograft BxPC-3 tumours yielded a 48.3% reduction in tumour volume relative to an untreated control group (p<0.05) when the tumour was exposed to both external magnetic and ultrasound fields during administration of the MagMBs. In contrast, application of an external ultrasound field alone resulted in a 27% reduction in tumour volume. In addition, activated caspase and BAX protein levels were both observed to be significantly elevated in tumours harvested from animals treated with the MagMBs in the presence of magnetic and ultrasonic fields when compared to expression of those proteins in tumours from either the control or ultrasound field only groups (p<0.05). These results suggest MagMBs have considerable potential as a platform to enable the targeted delivery of combined sonodynamic/antimetabolite therapy in pancreatic cancer.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Fluoruracila/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Microbolhas , Sonicação , Animais , Antimetabólitos Antineoplásicos/química , Avidina/administração & dosagem , Avidina/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Compostos Férricos/administração & dosagem , Compostos Férricos/química , Fluoruracila/química , Humanos , Fenômenos Magnéticos , Nanopartículas Metálicas/química , Camundongos SCID , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Rosa Bengala/administração & dosagem , Rosa Bengala/química , Carga Tumoral/efeitos dos fármacos
7.
Nanotechnology ; 28(5): 055101, 2017 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-28029105

RESUMO

Stimuli-responsive anticancer formulations can promote drug release and activation within the target tumour, facilitate cellular uptake, as well as improve the therapeutic efficacy of drugs and reduce off-target effects. In the present work, indocyanine green (ICG)-containing polyglutamate (PGA) nanoparticles were developed and characterized. Digestion of nanoparticles with cathepsin B, a matrix metalloproteinase overexpressed in the microenvironment of advanced tumours, decreased particle size and increased ICG cellular uptake. Incorporation of ICG in PGA nanoparticles provided the NIR-absorbing agent with time-dependent altered optical properties in the presence of cathepsin B. Having minimal dark toxicity, the formulation exhibited significant cytotoxicity upon NIR exposure. Combined use of the formulation with saporin, a ribosome-inactivating protein, resulted in synergistically enhanced cytotoxicity attributed to the photo-induced release of saporin from endo/lysosomes. The results suggest that this therapeutic approach can offer significant therapeutic benefit in the treatment of superficial malignancies, such as head and neck tumours.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Catepsina B/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Células Epiteliais/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Nanopartículas/química , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Corantes/química , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Endossomos/efeitos da radiação , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/efeitos da radiação , Humanos , Verde de Indocianina/química , Raios Infravermelhos , Cinética , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/efeitos da radiação , Nanopartículas/ultraestrutura , Tamanho da Partícula , Ácido Poliglutâmico/química , Proteólise , Proteínas Inativadoras de Ribossomos Tipo 1/química , Saporinas
8.
Biomaterials ; 80: 20-32, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26702983

RESUMO

In this manuscript we describe the preparation of an oxygen-loaded microbubble (O2MB) platform for the targeted treatment of pancreatic cancer using both sonodynamic therapy (SDT) and antimetabolite therapy. O2MB were prepared with either the sensitiser Rose Bengal (O2MB-RB) or the antimetabolite 5-fluorouracil (O2MB-5FU) attached to the microbubble (MB) surface. The MB were characterised with respect to size, physical stability and oxygen retention. A statistically significant reduction in cell viability was observed when three different pancreatic cancer cell lines (BxPc-3, MIA PaCa-2 and PANC-1), cultured in an anaerobic cabinet, were treated with both SDT and antimetabolite therapy compared to either therapy alone. In addition, a statistically significant reduction in tumour growth was also observed when ectopic human xenograft BxPC-3 tumours in SCID mice were treated with the combined therapy compared to treatment with either therapy alone. These results illustrate not only the potential of combined SDT/antimetabolite therapy as a stand alone treatment option in pancreatic cancer, but also the capability of O2-loaded MBs to deliver O2 to the tumour microenvironment in order to enhance the efficacy of therapies that depend on O2 to mediate their therapeutic effect. Furthermore, the use of MBs to facilitate delivery of O2 as well as the sensitiser/antimetabolite, combined with the possibility to activate the sensitiser using externally applied ultrasound, provides a more targeted approach with improved efficacy and reduced side effects when compared with conventional systemic administration of antimetabolite drugs alone.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Fluoruracila/uso terapêutico , Microbolhas/uso terapêutico , Oxigênio/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Rosa Bengala/uso terapêutico , Ultrassom/métodos , Animais , Antimetabólitos Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Feminino , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/uso terapêutico , Fluoruracila/administração & dosagem , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Oxigênio/administração & dosagem , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Rosa Bengala/administração & dosagem
9.
Adv Exp Med Biol ; 880: 429-50, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26486350

RESUMO

Sonodynamic therapy (SDT) represents an emerging approach that offers the possibility of non-invasively eradicating solid tumors in a site-directed manner. It involves the sensitization of target tissues with a non-toxic sensitizing chemical agent and subsequent exposure of the sensitized tissues to relatively low-intensity ultrasound. Essentially, both aspects (the sensitization and ultrasound exposure) are harmless, and cytotoxic events occur when both are combined. Due to the significant depth that ultrasound penetrates tissue, the approach provides an advantage over similar alternative approaches, such as photodynamic therapy (PDT), in which less penetrating light is employed to provide the cytotoxic effect in sensitized tissues. This suggests that sonodynamic therapy may find wider clinical application, particularly for the non-invasive treatment of less accessible lesions. Early SDT-based approaches employed many of the sensitizers used in PDT, although the manner in which ultrasound activates the sensitizer differs from activation events in PDT. Here we will review the currently accepted mechanisms by which ultrasound activates sensitizers to elicit cytotoxic effects. In addition, we will explore the breath of evidence from in-vitro and in-vivo SDT-based studies, providing the reader with an insight into the therapeutic potential offered by SDT in the treatment of cancer.


Assuntos
Neoplasias/terapia , Fotoquimioterapia , Terapia por Ultrassom , Ensaios Clínicos como Assunto , Humanos , Luminescência , Espécies Reativas de Oxigênio/metabolismo
10.
J Tissue Eng Regen Med ; 10(1): 29-39, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23596105

RESUMO

It has been suggested that gene transfer into donor cells is an efficient and practical means of locally supplying requisite growth factors for applications in tissue regeneration. Here we describe, for the first time, an ultrasound-mediated system that can non-invasively facilitate gene transfer into cells entrapped within fibrin-based matrices. Since ultrasound-mediated gene transfer is enhanced using microbubbles, we compared the efficacy of neutral and cationic forms of these reagents on the ultrasound-stimulated gene transfer process in gel matrices. In doing so we demonstrated the beneficial effects associated with the use of cationic microbubble preparations that interact directly with cells and nucleic acid within matrices. In some cases, gene expression was increased two-fold in gel matrices when cationic microbubbles were compared with neutral microbubbles. In addition, incorporating collagen into fibrin gels yielded a 25-fold increase in gene expression after application of ultrasound to microbubble-containing matrices. We suggest that this novel system may facilitate non-invasive temporal and spatial control of gene transfer in gel-based matrices for the purposes of tissue regeneration.


Assuntos
Eletroporação/métodos , Fibrina/farmacologia , Técnicas de Transferência de Genes , Regeneração/efeitos dos fármacos , Ultrassom , Animais , Biotinilação/efeitos dos fármacos , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Colágeno Tipo I/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Luciferases/metabolismo , Camundongos , Microbolhas
11.
J Control Release ; 203: 51-6, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25660073

RESUMO

Tumour hypoxia represents a major challenge in the effective treatment of solid cancerous tumours using conventional approaches. As oxygen is a key substrate for Photo-/Sono-dynamic Therapy (PDT/SDT), hypoxia is also problematic for the treatment of solid tumours using these techniques. The ability to deliver oxygen to the vicinity of the tumour increases its local partial pressure improving the possibility of ROS generation in PDT/SDT. In this manuscript, we investigate the use of oxygen-loaded, lipid-stabilised microbubbles (MBs), decorated with a Rose Bengal sensitiser, for SDT-based treatment of a pancreatic cancer model (BxPc-3) in vitro and in vivo. We directly compare the effectiveness of the oxygen-loaded MBs with sulphur hexafluoride (SF6)-loaded MBs and reveal a significant improvement in therapeutic efficacy. The combination of oxygen-carrying, ultrasound-responsive MBs, with an ultrasound-responsive therapeutic sensitiser, offers the possibility of delivering and activating the MB-sensitiser conjugate at the tumour site in a non-invasive manner, providing enhanced sonodynamic activation at that site.


Assuntos
Hipóxia/terapia , Microbolhas/uso terapêutico , Oxigênio/uso terapêutico , Neoplasias Pancreáticas/terapia , Fármacos Fotossensibilizantes/uso terapêutico , Rosa Bengala/uso terapêutico , Terapia por Ultrassom/métodos , Animais , Sistemas de Liberação de Medicamentos , Humanos , Hipóxia/complicações , Hipóxia/patologia , Masculino , Camundongos Endogâmicos BALB C , Oxigênio/administração & dosagem , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/patologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Rosa Bengala/administração & dosagem , Células Tumorais Cultivadas
12.
Int J Hyperthermia ; 31(2): 107-17, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25582025

RESUMO

Sonodynamic therapy (SDT) has emerged as a promising option for the minimally invasive treatment of solid cancerous tumours. SDT requires the combination of three distinct components: a sensitising drug, ultrasound, and molecular oxygen. Individually, these components are non-toxic but when combined together generate cytotoxic reactive oxygen species (ROS). The major advantage of SDT over its close relative photodynamic therapy (PDT), is the increased penetration of ultrasound through mammalian tissue compared to light. As a result, SDT can be used to treat a wider array of deeper and less accessible tumours than PDT. In this article, we critically review the current literature on SDT and discuss strategies that have been developed in combination with SDT to enhance the therapeutic outcome.


Assuntos
Neoplasias/terapia , Terapia por Ultrassom , Humanos , Espécies Reativas de Oxigênio
13.
Langmuir ; 30(49): 14926-30, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25409533

RESUMO

Microbubbles (MBs) have recently emerged as promising delivery vehicles for sensitizer drugs in sonodynamic therapy (SDT). The ability to selectively destroy the MB and activate the sensitizer using an external ultrasound trigger could provide a minimally invasive and highly targeted therapy. While lipid MBs have been approved for use as contrast agents in diagnostic ultrasound, the attachment of sensitizer drugs to their surface results in a significant reduction in particle stability. In this Article, we prepare both lipid and polymer (PLGA) MBs with rose bengal attached to their surface and demonstrate that PLGA MB conjugates are significantly more stable than their lipid counterparts. In addition, the improved stability offered by the PLGA shell does not hinder their selective destruction using therapeutically acceptable ultrasound intensities. Furthermore, we demonstrate that treatment of ectopic human tumors (BxPC-3) in mice with the PLGA MB-rose bengal conjugate and ultrasound reduced tumor volume by 34% 4 days after treatment while tumors treated with the conjugate alone increased in volume by 48% over the same time period. Therefore, PLGA MBs may offer a more stable alternative to lipid MBs for the site specific delivery of sensitizers in SDT.


Assuntos
Sistemas de Liberação de Medicamentos , Microbolhas , Ultrassom , Animais , Linhagem Celular , Sobrevivência Celular , Cumarínicos , Feminino , Células HeLa , Humanos , Camundongos , Estrutura Molecular , Terapia por Ultrassom , Neoplasias Uterinas/terapia
14.
Hum Gene Ther Methods ; 25(1): 57-71, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24164605

RESUMO

An ideal novel treatment for bone defects should provide regeneration without autologous or allogenous grafting, exogenous cells, growth factors, or biomaterials while ensuring spatial and temporal control as well as safety. Therefore, a novel osteoinductive nonviral in vivo gene therapy approach using sonoporation was investigated in ectopic and orthotopic models. Constitutive or regulated, doxycycline-inducible, bone morphogenetic protein 2 and 7 coexpression plasmids were repeatedly applied for 5 days. Ectopic and orthotopic gene transfer efficacy was monitored by coapplication of a luciferase plasmid and bioluminescence imaging. Orthotopic plasmid DNA distribution was investigated using a novel plasmid-labeling method. Luciferase imaging demonstrated an increased trend (61% vs. 100%) of gene transfer efficacy, and micro-computed tomography evaluation showed significantly enhanced frequency of ectopic bone formation for sonoporation compared with passive gene delivery (46% vs. 100%) dependent on applied ultrasound power. Bone formation by the inducible system (83%) was stringently controlled by doxycycline in vivo, and no ectopic bone formation was observed without induction or with passive gene transfer without sonoporation. Orthotopic evaluation in a rat femur segmental defect model demonstrated an increased trend of gene transfer efficacy using sonoporation. Investigation of DNA distribution demonstrated extensive binding of plasmid DNA to bone tissue. Sonoporated animals displayed a potentially increased union rate (33%) without extensive callus formation or heterotopic ossification. We conclude that sonoporation of BMP2/7 coexpression plasmids is a feasible, minimally invasive method for osteoinduction and that improvement of bone regeneration by sonoporative gene delivery is superior to passive gene delivery.


Assuntos
Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 7/genética , Técnicas de Transferência de Genes , Vetores Genéticos/metabolismo , Animais , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 7/metabolismo , Regeneração Óssea , Osso e Ossos/diagnóstico por imagem , Doxiciclina/farmacologia , Feminino , Fraturas Ósseas/terapia , Expressão Gênica/efeitos dos fármacos , Terapia Genética , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Masculino , Camundongos , Camundongos Nus , Músculo Esquelético/patologia , Osteogênese , Ratos , Ratos Sprague-Dawley , Sonicação , Nicho de Células-Tronco , Tomografia Computadorizada por Raios X
16.
Int J Med Microbiol ; 302(7-8): 293-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23072864

RESUMO

It has been known for some time that the micro-milieu of solid tumours provides an ideal environment for growth of facultative and strictly anaerobic bacteria, and it has been shown that certain species including Lactobacillus and Clostridium can colonise those environments leading to regression of tumour growth. Such observations have given rise to the concept of bacteriolytic therapy where live microorganisms might be employed to colonise the tumour and exert a tumorolytic effect. In choosing such an approach, it would be advantageous to exploit a relatively non-pathogenic strain and provide some form of containment that would enable site-specific injection and minimise dispersion of the microorganism throughout the host. In testing the feasibility of such an approach, we prepared microencapsulated formulations of Lactobacillus casei NCDO 161 and demonstrated that conditioned extra-capsular culture media were toxic to tumour cells in vitro. We further investigated the effects of the microencapsulated formulations on tumour growth in vivo following direct intra-tumoural injection. The study demonstrates significant inhibition of tumour growth in vivo by these formulations and suggests potential therapeutic benefit of this approach in the treatment of solid tumours.


Assuntos
Terapia Biológica/métodos , Lacticaseibacillus casei/fisiologia , Neoplasias/terapia , Animais , Cápsulas/administração & dosagem , Linhagem Celular , Sobrevivência Celular , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Histocitoquímica , Camundongos , Camundongos Endogâmicos C3H , Neoplasias/patologia , Resultado do Tratamento
17.
Chem Commun (Camb) ; 48(67): 8332-4, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22790600

RESUMO

A Rose Bengal sonosensitiser has been covalently attached to a lipid microbubble and the resulting conjugate shown to produce higher levels of singlet oxygen, enhanced cytotoxicity in a cancer cell line and a greater reduction in tumour growth than the sonosensitiser alone.


Assuntos
Microbolhas/uso terapêutico , Neoplasias/terapia , Ultrassonografia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos , Modelos Biológicos , Estrutura Molecular , Rosa Bengala/química
18.
ChemMedChem ; 7(8): 1465-71, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22715137

RESUMO

Photodynamic therapy (PDT) is emerging as a treatment modality for the management of neoplastic disease. Despite considerable clinical success, its application for the treatment of deep-seated lesions is constrained by the inability of visible light to penetrate deeply into tissues. An emerging alternative approach exploits the fact that many photosensitisers respond to ultrasound, eliciting cytotoxic effects on target cells and tissues; this has become known as sonodynamic therapy (SDT). The objectives of this study were 1) to determine whether the IR-absorbing dye, indocyanine green (ICG), can be employed as a sonosensitiser and 2) to determine whether ultrasound can be used to enhance ICG-mediated PDT. Exposing ICG-treated mouse fibrosarcoma cells to ultrasound at an energy density of 30 J cm(-2) decreased cell viability by 65 %. Prior exposure of ICG-treated cells to light (λ 830 nm) and subsequent treatment with ultrasound led to a 90 % decrease in cell viability. In combination treatments a synergistic effect was observed at lower doses of ultrasound. Microscopic examination of cell populations treated with light or ultrasound demonstrated the production of intracellular reactive oxygen species (ROS). Using a mouse tumour model, treatment with light, ultrasound, or a combination thereof led to respective decreases in tumour growth of 42, 67, and 98 % at day 27 post-treatment. These results could provide a means of circumventing light-penetration issues that currently challenge the widespread use of PDT in the treatment of cancer.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Verde de Indocianina/farmacologia , Raios Infravermelhos , Fármacos Fotossensibilizantes/farmacologia , Sonicação , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Fibrossarcoma/tratamento farmacológico , Verde de Indocianina/química , Verde de Indocianina/uso terapêutico , Camundongos , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
19.
Int J Hyperthermia ; 28(4): 300-10, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22621732

RESUMO

Ultrasound-mediated gene transfer is emerging as a possible alternative to viral gene transfer, and pre-clinical data suggest that it may play a significant role in gene therapy-based approaches to the treatment of disease. As an extracorporeal stimulus, ultrasound can non-invasively and transiently compromise cell membrane permeability (sonoporation), thereby offering the promise of delivering either genes or oligonucleotide-based therapeutics to cells and tissues in a site-specific manner. The membrane-permeabilising effects of ultrasound can be greatly enhanced using microbubble preparations, many of which have, in the past, found application as ultrasound contrast agents. Because these ultrasound-responsive agents are highly amenable to surface modification it has been suggested that they may be exploited as ultrasound-responsive nucleic acid delivery vehicles. In this article we seek to explore the potential role ultrasound, in combination with microbubble-based agents, may play in providing site-specific gene therapy-based approaches for the treatment of cancer.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética/métodos , Microbolhas , Neoplasias/terapia , Terapia por Ultrassom , Animais , Humanos
20.
Acta Biomater ; 8(3): 1273-80, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21958669

RESUMO

Ultrasound-mediated gene transfer is emerging as a practical means of facilitating targeted gene expression and is significantly enhanced in the presence of exogenously added microbubbles. This study explores the influence of microbubble surface modifications on their interaction with plasmid DNA and target cells, and the functional consequences of those interactions in terms of ultrasound-mediated gene transfer. Polyethylene glycol-stabilized, lipid-shelled microbubbles with neutral (SDM201), cationic (SDM202) and biotinylated cationic (SDM302) surfaces were compared in terms of their abilities to interact with a luciferase-encoding reporter plasmid DNA and with target cells in vitro. The results demonstrate that the biotinylated cationic microbubble>cationic microbubble>neutral microbubble, in terms of their abilities to interact with target cells and to enhance ultrasound-mediated gene transfer, particularly at low microbubble concentration. The presence of a net positive charge on both cationic microbubbles promoted the formation of microbubble-nucleic acid complexes, although preformation of the complexes prior to addition to target cells inhibited the interaction between the microbubbles and target cells in vitro. The impact of these findings on potential in vitro or ex vivo therapeutic applications of microbubble-enhanced ultrasound-mediated gene transfer is discussed. All three microbubble preparations could be used to facilitate gene transfer in vivo and the potential advantages associated with the use of the cationic microbubbles for targeted gene delivery are discussed.


Assuntos
Expressão Gênica , Técnicas de Transferência de Genes , Microbolhas , Plasmídeos/química , Plasmídeos/farmacologia , Som , Animais , Linhagem Celular , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...