Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37445169

RESUMO

In this paper, the sorption of NH3, H2O, SO2 and CO2 was tested for several selected inorganic materials. The tests were performed on samples belonging to two topologies of materials, faujasite (FAU) and framework-type MFI, the structures of which differ in pore size and connectivity. All sorbates are important in terms of reducing their emissions to the environment. They have different chemical nature: basic, alkaline, and acidic. They are all polar in structure and composition and two of them (ammonia and water vapor) can form hydrogen bonds. These differences result in different interactions with the surface of the adsorbents. This paper presents experimental data and proposes a mathematical description of the sorption process. The best fit of the experimental data was obtained for the Toth and GAB models. The studies showed that among the selected samples, faujasite has the best sorption capacity for ammonia and water vapor, while the best sorbent for sulfur dioxide is the MFI framework type. These materials behave like molecular sieves and can be used for quite selective adsorption of relevant gases. In addition, modification of the faujasite with organic silane resulted in a drastic reduction in the surface area of the sorbent, resulting in significantly lower sorption capacities for gases.

2.
R Soc Open Sci ; 9(6): 211371, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35754992

RESUMO

Recently, natural gas (mostly methane) is frequently used as fuel, while hydrogen is a promising renewable energy source. However, each gas produced contains impurity gases. As a result, membrane separation is required. The mixed matrix membrane (MMM) is a promising membrane. The huge surface area and well-defined pore structure of zeolite templated carbon (ZTC)-based MMM allow for effective separation. However, the interfacial vacuum in MMM is difficult to avoid, contributing to poor separation performance. This research tries to improve separation performance by altering membrane surfaces. MMM PSF/ZTC was modified by annealing at 120, 150, and 190°C; coating using 0.01, 0.03, and 0.05 mol tetramethyl orthosilicate (TMOS); and a combination of both, i.e. annealing at 190°C and coating using 0.03 mol TMOS. MMM PSF/ZTC successfully significantly improved CO2/CH4 selectivity by a combination of annealing at 190°C and coating 0.03 mol TMOS from 1.37 to 5.90 (331%), and H2/CH4 selectivity by coating with 0.03 mol TMOS from 4.58 to 65.76 (1378%). The enhancement of selectivity was due to structural changes to the membrane that became denser and smoother, which SEM and AFM observed. In this study, annealing and coating treatments are the methods investigated for improving the polymer matrix and filler particle adhesion.

3.
Membranes (Basel) ; 12(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35207024

RESUMO

A new evaluation method for preparing silica membranes by counter diffusion chemical vapor deposition (CVD) was proposed. This is the first attempt to provide new insights, such as the decomposition products, membrane selectivity, and precursor reactivity. The permeation of the carrier gas used for supplying a silica precursor was quantified during the deposition reaction by using a mass spectrometer. Membrane formation processes were evaluated by the decrease of the permeation of the carrier gas derived from pore blocking of the silica deposition. The membrane formation processes were compared for each deposition condition and precursor, and the apparent silica deposition rates from the precursors such as tetramethoxysilane (TMOS), hexyltrimethoxysilane (HTMOS), or tetraethoxysilane (TEOS) were investigated by changing the deposition temperature at 400-600 °C. The apparent deposition rates increased with the deposition temperature. The apparent activation energies of the carrier gas through the TMOS, HTMOS, and TEOS derived membranes were 44.3, 49.4, and 71.0 kJ mol-1, respectively. The deposition reaction of the CVD silica membrane depends on the alkoxy group of the silica precursors.

4.
Membranes (Basel) ; 11(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34940427

RESUMO

Thin pure-silica chabazite (Si-CHA) membranes have been synthesized by using a secondary growth method on a porous silica substrate. A CO2 permeance of 2.62 × 10-6 mol m-2 s-1 Pa-1 with a CO2/CH4 permeance ratio of 62 was obtained through a Si-CHA membrane crystallized for 8 h using a parent gel of H2O/SiO2 ratio of 4.6. The CO2 permeance through the Si-CHA membrane on a porous silica substrate was twice as high as that through the membrane synthesized on a porous alumina substrate, which displayed a similar zeolite layer thickness.

5.
ACS Omega ; 6(24): 15637-15650, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34179608

RESUMO

Hydrogen (H2) has become one of the promising alternative clean energy resources. Membrane technology is a potential method for hydrogen separation or production. This study aims to develop a new carbon membrane for hydrogen separation or production. Moreover, the permeation behavior of H2, CO2, and CH4 through a hollow fiber composite carbon membrane derived from P84 co-polyimide and with incorporation of zeolite composite carbon (ZCC) was also examined. ZCC was synthesized via the impregnation method of sucrose into zeolite-Y pores, followed by carbonization at 800 °C. Thus, this filler has a high surface area, high microporosity, ordered pore structure, and low hydrophilicity. The presence of zeolites in ZCC is predicted to increase certain gases' affinity for the membrane. Various heating rates (1-5 °C/min) were applied during pyrolysis to understand the effect of the heating rate on the pore structure and H2/CO2 and H2/CH4 gas separation performance. Moreover, gas permeation was evaluated at various temperatures (298-373 K) to study the thermodynamic aspect of the process. A characteristic graphite peak was detected at 2θ ∼ 44° in all carbon samples. Scanning electron microscopy (SEM) observations revealed the void-free surface and the asymmetric structure of the carbon membranes. During the permeation test, it was found that gas permeation through the membrane was significantly affected by the temperature of the separation process. The highest permeability of H2, CO2, and CH4 was detected on the composite carbon membrane at a 3 °C/min heating rate with a permeation temperature of 373 K. The thermodynamic study shows that CO2 and H2 have lower activation energies compared to CH4. The transport mechanism of the membrane involved adsorption and activated surface diffusion. The permeation temperature has a large impact on the transport of small penetrants in the carbon matrix.

6.
Membranes (Basel) ; 10(2)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046126

RESUMO

A membrane for controlling methanol-to-olefin (MTO) reactions was developed, which featured an MFI-type zeolite membrane (Si/Al = 25) that was synthesized on a porous α-alumina substrate using a secondary growth method. Here, the H2/SF6 permeance ratios were between 150 and 450. The methanol conversion rate was 70% with 38% ethylene selectivity and 28% propylene selectivity as determined using a cross-flow membrane contactor. In order to improve the olefin selectivity of the membrane, the MFI zeolite layer (Si/Al = ∞) was coated on an MFI-type zeolite membrane (Si/Al = 25). Using this two-layered membrane system, the olefin selectivity value increased to 85%; this was 19% higher than the value obtained during the single-layer membrane system.

7.
Membranes (Basel) ; 10(2)2020 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-32046234

RESUMO

The development of inorganic membranes has mainly found applicability in liquid separation technologies. However, only a few reports cite the permeation and separation of liquids through inorganic nanofiltration membranes compared with the more popular microfiltration membranes. Herein, we prepared silica membranes using 3,3,3-trifluoropropyltrimethoxysilane (TFPrTMOS) to investigate its liquid permeance performance using four different ion solutions (i.e., NaCl, Na2SO4, MgCl2, and MgSO4). The TFPrTMOS-derived membranes were deposited above a temperature of 175 °C, where the deposition behavior of TFPrTMOS was dependent on the organic functional groups decomposition temperature. The highest membrane rejection was from NaCl at 91.0% when deposited at 200 °C. For anions, the SO42- rejections were the greatest. It was also possible to separate monovalent and divalent anions, as the negatively charged groups on the membrane surfaces retained pore sizes >1.48 nm. Ions were also easily separated by molecular sieving below a pore size of 0.50 nm. For the TFPrTMOS-derived membrane deposited at 175 °C, glucose showed 67% rejection, which was higher than that achieved through the propyltrimethoxysilane membrane. We infer that charge exclusion might be due to the dissociation of hydroxyl groups resulting from decomposition of organic groups. Pore size and organic functional group decomposition were found to be important for ion permeation.

8.
Membranes (Basel) ; 9(8)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374961

RESUMO

The development of acid separation membranes is important. Silica-based reverse osmosis (RO) membranes for sulfuric acid (H2SO4) solution separation were developed by using a counter diffusion chemical vapor deposition (CVD) method. Diphenyldimethoxysilane (DPhDMOS) was used as a silica precursor. The deposited membrane showed the H2SO4 rejection of 81% with a total flux of 5.8 kg m-2 h-1 from the 10-3 mol L-1 of H2SO4. The γ-alumina substrate was damaged by the permeation of the H2SO4 solution. In order to improve acid stability, the silica substrates were developed. The acid stability was checked by the gas permeation tests after immersing in 1 mol L-1 of the H2SO4 solution for 24 h. The N2 permeance decreased by 11% with the acid treatment through the silica substrate, while the permeance decreased to 94% through the γ-alumina substrate. The flux and the rejection through the DPhDMOS-derived membrane on the silica substrate were stable in the 70 wt % H2SO4 solution.

9.
J Colloid Interface Sci ; 553: 372-381, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31228752

RESUMO

Hexavalent chromium (Cr(VI)) is one of the most toxic and carcinogenic species known to living beings, the environment, and our eco-system. Thus, it is urgent to develop a facile and effective approach for Cr(VI) removal. Zinc-based zeolitic imidazolate frameworks (ZIF-8), a typical metal organic framework, have high porosity, large specific surface area, high chemical stability, and abundant surface grafting sites. These sites can be easily modified with ethylenediamine (EDA) using a solvothermal process to generate a material that can serve as a potential candidate for photocatalytic Cr(VI) reduction under visible light irradiation. Various EDA contents and synthetic conditions were adopted in an attempt to investigate the correlation between ZIF-8 amine-functionalization and photocatalytic Cr(VI) reduction. The amine functionalization and the grafting sites on ZIF-8 were determined to be located at the -CH3 site of the 2-methylimidazole chains via X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance spectroscopy (NMR). Under optimum conditions, amine-functionalized ZIF-8 exhibited a normalized rate constant (k/specific surface area, kSSA), which was 9.8 times higher than that of unmodified ZIF-8 one for photocatalytic Cr(VI) reduction. The increased catalytic activity and range of visible light absorption of amine-functionalized ZIF-8 can be attributed to the increase in electron density due to the lone pairs of the surface grafted amines. In summary, amine-functionalized ZIF-8 could serve as a promising visible-light-active photocatalyst for environmental remediation.

10.
RSC Adv ; 9(6): 3367-3376, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35518957

RESUMO

Arsenite [As(iii)] and arsenate [As(v)] removal by direct contact membrane distillation (DCMD) using novel hydrophobic green, silica-based ceramic hollow fibre membranes derived from agricultural rice husk was investigated in this work. The green ceramic hollow fibre membranes were prepared from amorphous (ASHFM) and crystalline (CSHFM) silica-based rice husk ash and modified to be hydrophobic via immersion fluoroalkylsilane (FAS) grafting of 1H,1H,2H,2H-perfluorodecyltriethoxysilane. Superhydrophobic contact angle values up to 157° and 161° were obtained for ASHFM and CSHFM, respectively. Remarkably, the membrane surface morphology mimicked a look-alike lotus-leaf structure with decrement in pore size after grafting via the silane agent for both membranes. The effect of arsenic pH (3-11), arsenic concentration (1-1000 ppm) and feed temperature (50-80 °C) were studied and it was found that feed temperature had a significant effect on the permeate flux. The hydrophobic CSHFM, with a flux of 50.4 kg m-2 h-1 for As(iii) and 51.3 kg m-2 h-1 for As(v), was found to be the best of the tested membranes. In fact, this membrane can reject arsenic to the maximum contaminant level (MCL) limit of 10 ppb under any conditions, and no swelling mechanism of the membranes was observed after testing for 4 hours.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA