Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Clin Neurophysiol ; 157: 73-87, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38064930

RESUMO

OBJECTIVE: To investigate the oculomotor manifestations of Segawa disease (SD), considered to represent mild dopamine deficiency and discuss their pathophysiological basis. METHODS: We recorded visually- (VGS) and memory-guided saccade (MGS) tasks in 31 SD patients and 153 age-matched control subjects to study how basal ganglia (BG) dysfunction in SD evolves with age for male and female subjects. RESULTS: SD patients were impaired in initiating MGS, showing longer latencies with occasional failure. Patients showed impaired ability to suppress reflexive saccades; saccades to cues presented in MGS were more frequent and showed a shorter latency than in control subjects. These findings were more prominent in male patients, particularly between 13 and 25 years. Additionally, male patients showed larger delay in MGS latency in trials preceded by saccades to cue than those unpreceded. CONCLUSIONS: The findings can be explained by a dysfunction of the BG-direct pathway impinging on superior colliculus (SC) due to dopamine deficiency. The disturbed inhibitory control of saccades may be explained by increased SC responsivity to visual stimuli. SIGNIFICANCE: Oculomotor abnormalities in SD can be explained by dysfunction of the BG inhibitory pathways reaching SC, with a delayed maturation in male SD patients, consistent with previous pathological/physiological studies.


Assuntos
Sinais (Psicologia) , Dopamina , Humanos , Masculino , Feminino , Movimentos Sacádicos , Tempo de Reação/fisiologia
2.
Brain Sci ; 13(12)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38137082

RESUMO

AIM: To elucidate the pathophysiology of Gilles de la Tourette syndrome (GTS), which is associated with prior use of dopamine receptor antagonists (blockers) and treatment by L-Dopa, through saccade performance. METHOD: In 226 male GTS patients (5-14 years), we followed vocal and motor tics and obsessive-compulsive disorder (OCD) after discontinuing blockers at the first visit starting with low-dose L-Dopa. We recorded visual- (VGS) and memory-guided saccades (MGS) in 110 patients and 26 normal participants. RESULTS: At the first visit, prior blocker users exhibited more severe vocal tics and OCD, but not motor tics, which persisted during follow-up. Patients treated with L-Dopa showed greater improvement of motor tics, but not vocal tics and OCD. Patients with and without blocker use showed similarly impaired MGS performance, while patients with blocker use showed more prominently impaired inhibitory control of saccades, associated with vocal tics and OCD. DISCUSSION: Impaired MGS performance suggested a mild hypodopaminergic state causing reduced direct pathway activity in the (oculo-)motor loops of the basal ganglia-thalamocortical circuit. Blocker use may aggravate vocal tics and OCD due to disinhibition within the associative and limbic loops. The findings provide a rationale for discouraging blocker use and using low-dose L-Dopa in GTS.

3.
J Mov Disord ; 16(3): 231-247, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37309109

RESUMO

Clinical case studies and reporting are important to the discovery of new disorders and the advancement of medical sciences. Both clinicians and basic scientists play equally important roles leading to treatment discoveries for both cures and symptoms. In the field of movement disorders, exceptional observation of patients from clinicians is imperative, not just for phenomenology but also for the variable occurrences of these disorders, along with other signs and symptoms, throughout the day and the disease course. The Movement Disorders in Asia Task Force (TF) was formed to help enhance and promote collaboration and research on movement disorders within the region. As a start, the TF has reviewed the original studies of the movement disorders that were preliminarily described in the region. These include nine disorders that were first described in Asia: Segawa disease, PARK-Parkin, X-linked dystonia-parkinsonism, dentatorubral-pallidoluysian atrophy, Woodhouse-Sakati syndrome, benign adult familial myoclonic epilepsy, Kufor-Rakeb disease, tremulous dystonia associated with mutation of the calmodulin-binding transcription activator 2 gene, and paroxysmal kinesigenic dyskinesia. We hope that the information provided will honor the original researchers and help us learn and understand how earlier neurologists and basic scientists together discovered new disorders and made advances in the field, which impact us all to this day.

4.
BMJ Neurol Open ; 4(2): e000291, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110924

RESUMO

Background: There was no nationwide epidemiological study of Lambert-Eaton myasthenic syndrome (LEMS) in Japan; therefore, we conducted a nationwide survey. Methods: For the first survey, we sent survey sheets to randomly selected medical departments (n=7545) to obtain the number of LEMS who visited medical departments between 1 January 2017 and 31 December 2017. For the second survey, we sent survey sheets to the corresponding medical departments to obtain clinical information on LEMS. Results: We received 2708 responses (recovery rate: 35.9%) to the first survey. We estimated the number of LEMS as 348 (95% CI 247 to 449). The prevalence was 2.7 (95% CI 1.9 to 3.5) in 1 000 000 population. As a result of the second survey, we obtained 30 case records of 16 men and 14 women. Fourteen patients (46.7%) had a tumour, and 10 out of 14 tumours were small-cell lung carcinoma (71.4%). There was a predominance of men in the LEMS with tumour (paraneoplastic LEMS, P-LEMS) (n=11, 78.6%) and women in the LEMS without tumour (a primary autoimmune form of LEMS, AI-LEMS) (n=11, 68.8%) (p=0.0136). The onset age (mean (SD)) for the P-LEMS was 67.1 (9.0), and that for AI-LEMS was 57.8 (11.2) years old (p=0.0103). The disease duration (median) for P-LEMS was 2 years, and for AI-LEMS was 7.5 years (p=0.0134). Conclusions: The prevalence of LEMS in Japan is similar to that in other countries. There are predominances of men in P-LEMS and women in AI-LEMS.

5.
PLoS One ; 17(9): e0274161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36129914

RESUMO

OBJECTIVE: To study the updated prevalence and clinical features of myasthenia gravis (MG) in Japan during 2017. METHODS: We sent survey sheets to the randomly selected medical departments (number = 7,545). First, we asked the number of MG patients who visited medical departments from January 1, 2017, to December 31, 2017. Then, we sent the second survey sheet to the medical departments that answered the first survey to obtain the clinical information of patients who received MG diagnosis between January 1, 2015, and December 31, 2017. RESULTS: The received answer to the first survey were 2,708 (recovery rate: 35.9%). After all, the prevalence of the 100,000 population was estimated as 23.1 (95%CI: 20.5-25.6). As a result of the second survey, we obtained 1,464 case records. After checking the duplications and lacking data, we utilized 1,195 data for further analysis. The median [interquartile range (IQR)] from the onset age of total patients was 59 (43-70) years old. The male-female ratio was 1: 1.15. The onset age [median (IQR)] for female patients was 58 (40-72) years old, and that for male patients was 60 (49-69) years old (Wilcoxon-Mann-Whitney test, p = 0.0299). We divided patients into four categories: 1) anti-acetylcholine receptor antibody (AChRAb) (+) thymoma (Tm) (-), 2) AChRAb(+)Tm(+), 3) anti-muscle-specific kinase antibody (MuSKAb) (+), and AChRAb(-)MuSKAb(-) (double negative; DN). The onset age [median (IQR)] of AChRAb(+)Tm(-) was 64 (48-73) years old, and AChRb(+)Tm(+) was 55 (45-66), MuSKAb(+) was 49 (36-64), DN was 47 (35-60) year old. The multivariate logistic regression analysis using sex, initial symptoms, repetitive nerve stimulation test (RNST), and edrophonium test revealed that sex, ocular symptoms, bulbar symptoms, and RNST were factors to distinguish each category. The myasthenia gravis activities of daily living profile at the severest state were significantly higher in MuSKAb(+). MuSKAb(+) frequently received prednisolone, tacrolimus plasmapheresis, and intravenous immunoglobulin; however, they received less acetylcholine esterase inhibitor. 99.2% of AChRAb(+)Tm(+) and 15.4% of AChRAb(+)Tm(-) received thymectomy. MuSKAb(+) did not receive thymectomy, and only 5.7% of DN received thymectomy. The prognosis was favorable in all categories. CONCLUSION: Our result revealed that the prevalence of Japanese MG doubled from the previous study using the same survey method in 2006. We also found that the onset age shifted to the elderly, and the male-female ratio reached almost even. Classification in four categories; AChRAb(+)Tm(-), AChRAb(+)Tm(+), MuSKAb(+), and DN, well describe the specific clinical features of each category and differences in therapeutic approaches.


Assuntos
Miastenia Gravis , Timoma , Neoplasias do Timo , Atividades Cotidianas , Adulto , Idoso , Autoanticorpos , Edrofônio/uso terapêutico , Esterases , Feminino , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Japão/epidemiologia , Masculino , Pessoa de Meia-Idade , Miastenia Gravis/epidemiologia , Prednisolona/uso terapêutico , Inquéritos e Questionários , Tacrolimo/uso terapêutico , Timectomia/métodos
6.
Insect Biochem Mol Biol ; 148: 103814, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35932971

RESUMO

Pyrethroid insecticides prolong the opening of insect sodium channels by binding to two predicted pyrethroid receptor sites (PyR), PyR1 and PyR2. Many naturally-occurring sodium channel mutations that confer pyrethroid resistance (known as knockdown resistance, kdr) are located at PyR1. Recent studies identified two new mutations, V253F and T267A, at PyR2, which co-exist with two well-known mutations F1534C or M918T, at PyR1, in pyrethroid-resistant populations of Aedes aegypti and Nilaparvata lugens, respectively. However, the role of the V253F and T267A mutations in pyrethroid resistance has not been functionally examined. Here we report functional characterization of the V253F and T267A mutations in the Ae. aegypti sodium channel AaNav2-1 and the N. lugens sodium channel NlNav1 expressed in Xenopus oocytes. Both mutations alone reduced channel sensitivity to pyrethroids, including etofenprox. We docked etofenprox in a homology model of the pore module of the NlNav1 channel based on the crystal structure of an open prokaryotic sodium channel NavMs. In the low-energy binding pose etofenprox formed contacts with V253, T267 and a previously identified L1014 within PyR2. Combining of V253F or T267A with F1534C or M918T results in a higher level of pyrethroid insensitivity. Furthermore, both V253F and T267A mutations altered channel gating properties. However, V253F- and T267A-induced gating modifications was not observed in the double mutant channels. Our findings highlight the first example in which naturally-found combinational mutations in PyR1 and PyR2 not only confer higher level pyrethroid insensitivity, but also reduce potential fitness tradeoff in pyrethroid-resistant mosquitoes caused by kdr mutation-induced sodium channel gating modifications.


Assuntos
Aedes , Inseticidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Aedes/genética , Animais , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mutação , Piretrinas/farmacologia , Canais de Sódio/genética , Canais de Sódio Disparados por Voltagem/genética
7.
Biomed J ; 45(2): 229-239, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34547532

RESUMO

Tourette syndrome (TS) is a frequently observed developmental neuropsychological disorder occurring in children. The pathophysiology involves both genetic and environmental factors. In this review, clinical characteristics, pathophysiology, and treatment approaches based on the pathophysiology of TS are presented. The pathophysiology is the acceleration of developmental decrement of dopamine (DA) activity at the terminal of nigro-striatal (NS)-DA system causing DA D2 receptor up-ward regulation. Serotonergic neurons involving in development of the biphasic sleep-wake-rhythm, and locomotion may be involved. Pharmacological treatments constitute an important part in managing TS. Small dose of levodopa and aripiprazole showed the good effect controlling the tics, without side effects. Intervention with enhancing the day time activity and keeping the regular sleep-wake-rhythm, and encouraging locomotion are important. The data from Yoshiko Nomura Neurological Clinic for Children regarding the clinical features and outcomes, medication effects, and OCD and outcomes are shown. To discuss about the environmental factor, how the COVID-19 pandemic affected the TS patients is also presented.


Assuntos
Tratamento Farmacológico da COVID-19 , Tiques , Síndrome de Tourette , Criança , Humanos , Pandemias , Tiques/complicações , Síndrome de Tourette/tratamento farmacológico , Síndrome de Tourette/epidemiologia
8.
Insect Biochem Mol Biol ; 137: 103625, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34358664

RESUMO

Scorpion α-toxins bind at the pharmacologically-defined site-3 on the sodium channel and inhibit channel inactivation by preventing the outward movement of the voltage sensor in domain IV (IVS4), whereas scorpion ß-toxins bind at site-4 on the sodium channel and enhance channel activation by trapping the voltage sensor of domain II (IIS4) in its outward position. However, limited information is available on the role of the voltage-sensing modules (VSM, comprising S1-S4) of domains I and III in toxin actions. We have previously shown that charge reversing substitutions of the innermost positively-charged residues in IIIS4 (R4E, R5E) increase the activity of an insect-selective site-4 scorpion toxin, Lqh-dprIT3-c, on BgNav1-1a, a cockroach sodium channel. Here we show that substitutions R4E and R5E in IIIS4 also increase the activity of two site-3 toxins, LqhαIT from Leiurusquinquestriatus hebraeus and insect-selective Av3 from Anemonia viridis. Furthermore, charge reversal of either of two conserved negatively-charged residues, D1K and E2K, in IIIS2 also increase the action of the site-3 and site-4 toxins. Homology modeling suggests that S2-D1 and S2-E2 interact with S4-R4 and S4-R5 in the VSM of domain III (III-VSM), respectively, in the activated state of the channel. However, charge swapping between S2-D1 and S4-R4 had no compensatory effects on gating or toxin actions, suggesting that charged residue interactions are complex. Collectively, our results highlight the involvement of III-VSM in the actions of both site 3 and site 4 toxins, suggesting that charge reversing substitutions in III-VSM allosterically facilitate IIS4 or IVS4 voltage sensor trapping by these toxins.


Assuntos
Venenos de Cnidários/farmacologia , Drosophila melanogaster/genética , Proteínas de Insetos/genética , Venenos de Escorpião/farmacologia , Canais de Sódio/genética , Animais , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Proteínas de Insetos/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Canais de Sódio/metabolismo
9.
PLoS Genet ; 17(7): e1009677, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34237075

RESUMO

Pyrethrum extract from dry flowers of Tanacetum cinerariifolium (formally Chrysanthemum cinerariifolium) has been used globally as a popular insect repellent against arthropod pests for thousands of years. However, the mechanistic basis of pyrethrum repellency remains unknown. In this study, we found that pyrethrum spatially repels and activates olfactory responses in Drosophila melanogaster, a genetically tractable model insect, and the closely-related D. suzukii which is a serious invasive fruit crop pest. The discovery of spatial pyrethrum repellency and olfactory response to pyrethrum in D. melanogaster facilitated our identification of four odorant receptors, Or7a, Or42b, Or59b and Or98a that are responsive to pyrethrum. Further analysis showed that the first three Ors are activated by pyrethrins, the major insecticidal components in pyrethrum, whereas Or98a is activated by (E)-ß-farnesene (EBF), a sesquiterpene and a minor component in pyrethrum. Importantly, knockout of Or7a, Or59b or Or98a individually abolished fly avoidance to pyrethrum, while knockout of Or42b had no effect, demonstrating that simultaneous activation of Or7a, Or59b and Or98a is required for pyrethrum repellency in D. melanogaster. Our study provides insights into the molecular basis of repellency of one of the most ancient and globally used insect repellents. Identification of pyrethrum-responsive Ors opens the door to develop new synthetic insect repellent mixtures that are highly effective and broad-spectrum.


Assuntos
Chrysanthemum cinerariifolium/metabolismo , Repelentes de Insetos/química , Receptores Odorantes/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Flores , Repelentes de Insetos/metabolismo , Inseticidas/química , Odorantes/análise , Piretrinas/química , Piretrinas/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/fisiologia , Sesquiterpenos/química
10.
Nat Commun ; 12(1): 2107, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833240

RESUMO

Vacuolar H+-ATPases (V-ATPases) transport protons across cellular membranes to acidify various organelles. ATP6V0A1 encodes the a1-subunit of the V0 domain of V-ATPases, which is strongly expressed in neurons. However, its role in brain development is unknown. Here we report four individuals with developmental and epileptic encephalopathy with ATP6V0A1 variants: two individuals with a de novo missense variant (R741Q) and the other two individuals with biallelic variants comprising one almost complete loss-of-function variant and one missense variant (A512P and N534D). Lysosomal acidification is significantly impaired in cell lines expressing three missense ATP6V0A1 mutants. Homozygous mutant mice harboring human R741Q (Atp6v0a1R741Q) and A512P (Atp6v0a1A512P) variants show embryonic lethality and early postnatal mortality, respectively, suggesting that R741Q affects V-ATPase function more severely. Lysosomal dysfunction resulting in cell death, accumulated autophagosomes and lysosomes, reduced mTORC1 signaling and synaptic connectivity, and lowered neurotransmitter contents of synaptic vesicles are observed in the brains of Atp6v0a1A512P/A512P mice. These findings demonstrate the essential roles of ATP6V0A1/Atp6v0a1 in neuronal development in terms of integrity and connectivity of neurons in both humans and mice.


Assuntos
Encefalopatias/genética , Encéfalo/crescimento & desenvolvimento , Neurônios/fisiologia , Neurotransmissores/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Animais , Autofagossomos/patologia , Mapeamento Encefálico/métodos , Catepsina D/metabolismo , Linhagem Celular , Células HEK293 , Humanos , Mutação com Perda de Função/genética , Lisossomos/patologia , Imageamento por Ressonância Magnética/métodos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Mutação de Sentido Incorreto/genética , Neurônios/citologia , Vesículas Sinápticas/patologia
11.
Neurosci Res ; 171: 114-123, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33785412

RESUMO

16p11.2 deletion is one of the most influential copy number variations (CNVs) associated with autism spectrum disorder (ASD). Previous studies have investigated the pathophysiology of 16p11.2 deletion both in vitro and in vivo, and have identified features such as NMDAR dysfunction, excitation-inhibition imbalance, transcriptional dysregulation, and impaired cortical development. However, little is known about the transcriptional profiles of human neural cells. Here, we constructed an isogenic human embryonic stem (hES) cell model with 16p11.2 deletion using a CRISPR/Cas9 system and performed transcriptome analyses of hES-derived 2-dimensional neural cells. We identified several characteristics which may correlate with the neuropathology of 16p11.2 deletion: predisposition to differentiate into neural lineages, enhanced neurogenesis, and dysregulation of G protein-coupled receptor signaling and RAF/MAPK pathway. We also found upregulation of fragile X mental retardation protein (FMRP) target genes including GRM5, which is implicated as a common trait between 16p11.2 deletion and fragile X syndrome. Extending our knowledge into other ASD models would help us to understand the molecular pathology of this disorder.


Assuntos
Transtorno do Espectro Autista , Transtorno do Espectro Autista/genética , Deleção Cromossômica , Variações do Número de Cópias de DNA , Células-Tronco Embrionárias , Perfilação da Expressão Gênica , Humanos
12.
Arch Insect Biochem Physiol ; 104(2): e21686, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32378259

RESUMO

Aedes aegypti is the primary mosquito vector of dengue, yellow fever, Zika and chikungunya. Current strategies to control Ae. aegypti rely heavily on insecticide interventions. Pyrethroids are a major class of insecticides used for mosquito control because of their fast acting, highly insecticidal activities and low mammalian toxicity. However, Ae. aegypti populations around the world have begun to develop resistance to pyrethroids. So far, more than a dozen mutations in the sodium channel gene have been reported to be associated with pyrethroid resistance in Ae. aegypti. Co-occurrence of resistance-associated mutations is common in pyrethroid-resistant Ae. aegypti populations. As global use of pyrethroids in mosquito control continues, new pyrethroid-resistant mutations keep emerging. In this microreview, we compile pyrethroid resistance-associated mutations in Ae. aegypti in a chronological order, as they were reported, and summarize findings from functional evaluation of these mutations in an in vitro sodium channel expression system. We hope that the information will be useful for tracing possible evolution of pyrethroid resistance in this important human disease vector, in addition to the development of methods for global monitoring and management of pyrethroid resistance in Ae. aegypti.


Assuntos
Aedes/efeitos dos fármacos , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mutação , Piretrinas/farmacologia , Canais de Sódio/genética , Aedes/genética , Animais
13.
Pathol Int ; 70(7): 422-432, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32342600

RESUMO

Niemann-Pick disease type C (NPC) is a neurovisceral lipid-storage disease. Although NPC patients show lipid storage in anterior horn cells of the spinal cord, little information is available regarding the electron microscopic analyses of the morphologies of intra-endosomal lipid like-materials in the anterior horn cells of NPC patients. In this study, we elucidated the intra-endosomal ultrastructures in spinal anterior horn cells in an NPC patient, as well as in mutant BALB/c NPC1-/- mice with a retroposon insertion in the NPC1 gene. These morphologies were classified into four types: vesicle, multiple concentric sphere (MCS), membrane, and rose flower. The percentages of the composition in the NPC patient and NPC1-/- mice were: vesicle (55.5% and 14.9%), MCS (15.7% and 3.4%), membrane (23.6% and 57.1%), and rose flower (5.2% and 24.6%), respectively. Formation of the intra-endosomal structures could proceed as follows: (i) a vesicle or MCS buds off the endosome into the lumen; (ii) when a vesicle breaks down, a membrane is formed; and (iii) after an MCS breaks down, a rose flower structure is formed. Our new finding in this study is that ultrastructural morphology is the same between the NPC patient and NPC1-/- mice, although there are differences in the composition.


Assuntos
Células do Corno Anterior/ultraestrutura , Modelos Animais de Doenças , Doença de Niemann-Pick Tipo C/patologia , Animais , Células do Corno Anterior/patologia , Pré-Escolar , Feminino , Humanos , Corpos de Inclusão/patologia , Corpos de Inclusão/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteína C1 de Niemann-Pick/genética , Retroelementos
14.
PLoS Negl Trop Dis ; 13(6): e0007432, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31158225

RESUMO

BACKGROUND: Multiple mutations in the voltage-gated sodium channel have been associated with knockdown resistance (kdr) to DDT and pyrethroid insecticides in a major human disease vector Aedes aegypti. One mutation, V1016G, confers sodium channel resistance to pyrethroids, but a different substitution in the same position V1016I alone had no effect. In pyrethroid-resistant Ae. aegypti populations, V1016I is often linked to another mutation, F1534C, which confers sodium channel resistance only to Type I pyrethroids including permethrin (PMT), but not to Type II pyrethroids including deltamethrin (DMT). Mosquitoes carrying both V1016G and F1534C exhibited a greater level of pyrethroid resistance than those carrying F1534C alone. More recently, a new mutation T1520I co-existing with F1534C was detected in India. However, whether V1016I or T1520I enhances pyrethroid resistance of sodium channels carrying F1534C remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: V1016I, V1016G, T1520I and F1534C substitutions were introduced alone and in various combinations into AaNav1-1, a sodium channel from Aedes aegypti. The mutant channels were then expressed in Xenopus oocytes and examined for channel properties and sensitivity to pyrethroids using the two-electrode voltage clamping technique. The results showed that V1016I or T1520I alone did not alter the AaNav1-1 sensitivity to PMT or DMT. However, the double mutant T1520I+F1534C was more resistant to PMT than F1534C, but remained sensitive to DMT. In contrast, the double mutant V1016I+F1534C was resistant to DMT and more resistant to PMT than F1534C. Furthermore, V1016I/G and F1534C channels, but not T1520I, were resistant to dichlorodiphenyltrichloroethane (DDT). Cryo-EM structures of sodium channels suggest that T1520I allosterically deforms geometry of the pyrethroid receptor site PyR1 in AaNav1-1. The small deformation does not affect binding of DDT, PMT or DMT, but in combination with F1534C it increases the channel resistance to PMT and DDT. CONCLUSIONS/SIGNIFICANCE: Our data corroborated the previously proposed sequential selection of kdr mutations in Ae. aegypti. We proposed that mutation F1534C first emerged in response to DDT/pyrethroids providing a platform for subsequent selection of mutations V1016I and T1520I that confer greater and broader spectrum of pyrethroid resistance.


Assuntos
Aedes/genética , DDT/farmacologia , Evolução Molecular , Resistência a Inseticidas , Inseticidas/farmacologia , Piretrinas/farmacologia , Canais de Sódio/genética , Aedes/efeitos dos fármacos , Substituição de Aminoácidos , Animais , Células Cultivadas , Expressão Gênica , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Canais de Sódio/metabolismo , Xenopus
15.
J Med Genet ; 56(6): 396-407, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842224

RESUMO

BACKGROUND: Rett syndrome (RTT) is a characteristic neurological disease presenting with regressive loss of neurodevelopmental milestones. Typical RTT is generally caused by abnormality of methyl-CpG binding protein 2 (MECP2). Our objective to investigate the genetic landscape of MECP2-negative typical/atypical RTT and RTT-like phenotypes using whole exome sequencing (WES). METHODS: We performed WES on 77 MECP2-negative patients either with typical RTT (n=11), atypical RTT (n=22) or RTT-like phenotypes (n=44) incompatible with the RTT criteria. RESULTS: Pathogenic or likely pathogenic single-nucleotide variants in 28 known genes were found in 39 of 77 (50.6%) patients. WES-based CNV analysis revealed pathogenic deletions involving six known genes (including MECP2) in 8 of 77 (10.4%) patients. Overall, diagnostic yield was 47 of 77 (61.0 %). Furthermore, strong candidate variants were found in four novel genes: a de novo variant in each of ATPase H+ transporting V0 subunit A1 (ATP6V0A1), ubiquitin-specific peptidase 8 (USP8) and microtubule-associated serine/threonine kinase 3 (MAST3), as well as biallelic variants in nuclear receptor corepressor 2 (NCOR2). CONCLUSIONS: Our study provides a new landscape including additional genetic variants contributing to RTT-like phenotypes, highlighting the importance of comprehensive genetic analysis.


Assuntos
Sequenciamento do Exoma , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Fenótipo , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Ontologia Genética , Redes Reguladoras de Genes , Estudos de Associação Genética/métodos , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Polimorfismo de Nucleotídeo Único
16.
Arch Biochem Biophys ; 652: 59-70, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29936083

RESUMO

Voltage-gated sodium channels have residues that change or may change contacts upon gating. Contributions of individual contacts in stability of different states are incompletely understood. Pore-lining inner helices contain exceptionally conserved asparagines in positions i20. Here we explored how mutations in positions i20 and i29 affect electrophysiological properties of insect sodium channels. In repeat interfaces I/IV, III/II and IV/III, alanine substitutions caused positive activation shifts in positions i20 and i29, negative shifts of slow inactivation in positions i20 and positive shifts of slow inactivation in positions i29. The results support the hypothesis on open state inter-repeat H-bonding of residues i20 and i29. The shift magnitudes vary between interfaces, reflecting structural asymmetry of the channels. Mutations in positions i20 of repeats III and IV caused much longer recovery delay from the slow and fast inactivation than other mutations. In repeat IV, alanine substitution of tyrosine i30 rescued positive activation shift of mutation in position i29. Our data suggest that polar residues in positions i29 are involved in stabilization of both the open and slow-inactivated states. Transition between the states may involve switching of H-bonding partners of residues i29 from the conserved asparagines to currently unknown residues.


Assuntos
Mutação , Canais de Sódio/metabolismo , Sequência de Aminoácidos , Animais , Insetos , Ativação do Canal Iônico , Mutagênese Sítio-Dirigida , Homologia de Sequência de Aminoácidos , Canais de Sódio/química , Canais de Sódio/genética
18.
Brain Nerve ; 69(12): 1373-1385, 2017 Dec.
Artigo em Japonês | MEDLINE | ID: mdl-29282341

RESUMO

Tourette syndrome (TS) is a neuropsychiatric disorder with the onset in childhood. TS is a form of tic disorders, and characterized by the motor and vocal tics, and comorbidities such as attention deficit hyperkinetic and obsessive compulsive disorders. These symptoms appear age dependently, showing a wax and wane course, and subside or abolish by the late teens. Pathophysiology of TS involves the dysfunction of both motor and non-motor basal ganglia-thalamo-cortical circuitries. The nigrostriatal dopamine (DA) system takes the exponential decrement at the striatum. In TS, this decrement is accelerated in association with DA-D2 receptor super-sensitivity, which disinhibits the descending and ascending output pathways of the basal ganglia. Disinhibited motor basal ganglia-thalamo-cortical circuitries develop the specific tics according to the target sites. Hypofunction of the 5-hydroxytriptophan (5-HT) neurons of the brainstem innervate the striatum involved in non-motor basal ganglia-thalamo-cortical circuitries and cause the obsessive compalsive disorder and other behavioral disorders. The associated DA-D2 receptor supersensitivity is assumed to be a consequence of the developmental abnormalities and not due to denervation supersensitivity. The treatments of TS aim to correct the 5-HT hypofunction by improving the environmental factors and super-sensitized DA receptors medically by a small dose of levodopa and/or aripiprazole.


Assuntos
Síndrome de Tourette/fisiopatologia , Idade de Início , Estimulação Encefálica Profunda , Neurônios Dopaminérgicos/enzimologia , Humanos , Prognóstico , Síndrome de Tourette/epidemiologia , Síndrome de Tourette/etiologia , Síndrome de Tourette/terapia
19.
Proc Natl Acad Sci U S A ; 114(49): 12922-12927, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29158414

RESUMO

Insecticides are widely used to control pests in agriculture and insect vectors that transmit human diseases. However, these chemicals can have a negative effect on nontarget, beneficial organisms including bees. Discovery and deployment of selective insecticides is a major mission of modern toxicology and pest management. Pyrethroids exert their toxic action by acting on insect voltage-gated sodium channels. Honeybees and bumblebees are highly sensitive to most pyrethroids, but are resistant to a particular pyrethroid, tau-fluvalinate (τ-FVL). Because of its unique selectivity, τ-FVL is widely used to control not only agricultural pests but also varroa mites, the principal ectoparasite of honeybees. However, the mechanism of bee resistance to τ-FVL largely remains elusive. In this study, we functionally characterized the sodium channel BiNav1-1 from the common eastern bumblebee (Bombus impatiens) in Xenopus oocytes and found that the BiNav1-1 channel is highly sensitive to six commonly used pyrethroids, but resistant to τ-FVL. Phylogenetic and mutational analyses revealed that three residues, which are conserved in sodium channels from 12 bee species, underlie resistance to τ-FVL or sensitivity to the other pyrethroids. Further computer modeling and mutagenesis uncovered four additional residues in the pyrethroid receptor sites that contribute to the unique selectivity of the bumblebee sodium channel to τ-FVL versus other pyrethroids. Our data contribute to understanding a long-standing enigma of selective pyrethroid toxicity in bees and may be used to guide future modification of pyrethroids to achieve highly selective control of pests with minimal effects on nontarget organisms.


Assuntos
Abelhas/efeitos dos fármacos , Proteínas de Insetos/química , Inseticidas/química , Nitrilas/química , Piretrinas/química , Canais de Sódio Disparados por Voltagem/química , Motivos de Aminoácidos , Animais , Sítios de Ligação , Células Cultivadas , Resistência a Inseticidas , Inseticidas/farmacologia , Simulação de Acoplamento Molecular , Nitrilas/farmacologia , Conformação Proteica em alfa-Hélice , Piretrinas/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Xenopus laevis
20.
Sci Rep ; 7: 46549, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28422157

RESUMO

The yellow fever mosquito, Aedes aegypti, particularly in Neotropical regions, is the principal vector of dengue, yellow fever, Zika and Chikungunya viruses. Pyrethroids remain one of the most used insecticides to control Aedes mosquitoes, despite the development of pyrethroid resistance in many mosquito populations worldwide. Here, we report a Brazilian strain of A. aegypti with high levels (approximately 100-60,000 fold) of resistance to both type I and type II pyrethroids. We detected two mutations (V410L and F1534C) in the sodium channel from this resistant strain. This study is the first report of the V410L mutation in mosquitoes. Alone or in combination with the F1534C mutation, the V410L mutation drastically reduced the sensitivity of mosquito sodium channels expressed in Xenopus oocytes to both type I and type II pyrethroids. The V410L mutation presents a serious challenge for the control of A. aegypti and will compromise the use of pyrethroids for the control of A. aegypti in Brazil; therefore, early monitoring of the frequency of the V410L mutation will be a key resistance management strategy to preserve the effectiveness of pyrethroid insecticides.


Assuntos
Aedes , Resistência a Medicamentos/genética , Proteínas de Insetos , Controle de Mosquitos , Mosquitos Vetores , Mutação de Sentido Incorreto , Piretrinas/farmacologia , Canais de Sódio , Aedes/genética , Aedes/metabolismo , Substituição de Aminoácidos , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mosquitos Vetores/genética , Mosquitos Vetores/metabolismo , Canais de Sódio/genética , Canais de Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...