RESUMO
Latin American countries produce more than a quarter of the world's beef and are a major global supplier of livestock protein. Tick-borne diseases (TBDs) are a major constraint to the livestock industry worldwide, including in Latin America. The aim of this study was to detect and characterise tick-borne pathogens in cattle from Santa Cruz, Bolivia, where no detailed epidemiological data are available. Blood samples were collected from 104 cattle. Apicomplexan parasites were detected by nested PCR amplification of the 18S ribosomal RNA gene (rDNA), and Anaplasmataceae was screened by the PCR amplification of 16S rDNA, followed by characterisation based on the heat shock protein and citrate synthase gene sequences. Babesia infection was observed in nine cattle (one Babesia bovis and eight Babesia bigemina), while Anaplasmataceae infection was detected in thirty-two cattle. A sequencing analysis confirmed the presence of Anaplasma marginale and Anaplasma platys-like. These results provide the first molecular evidence for the four above-mentioned tick-borne pathogens in cattle in Bolivia. This information improves our understanding of the epidemiology of TBDs and will help in formulating appropriate and improved pathogen control strategies.
RESUMO
Two IgM murine monoclonal antibodies (MAbs), EgC1 and EgC3, were produced against the excretory/secretory (E/S) products of Echinococcus granulosus adult worms. Immunoblotting revealed that both predominantly recognized a 50 kDa antigen in the somatic extract and an 85 kDa component in the E/S products. Immunolocalization showed that both MAbs reacted with the tegument of the parasite, and additionally EgC3 reacted with parenchyma and the tegument lining the external surface of the reproductive organs. A coproantigen capture ELISA was developed using a rabbit polyclonal antibody against E/S products from adult tapeworms as catching antibodies, and each one of MAbs as detecting antibody. The assays detected seven out of eight (EgC1), and eight out of eight (EgC3) experimentally infected dogs (worm burdens ranging from 61 to 57,500), using heat-treated samples obtained at prepatent period, and none (n=8) of helminth-free samples. Time course analysis showed that, after a 12-25 days lag, coproantigen levels rose above cut off O.D. values and typically peaked around 30 days post-infection (DPI) at the end of the experiment. One dog experimentally infected with Taenia hydatigena metacestodes was slightly detected as positive at different time points after 30 DPI. Both MAbs showed a similar pattern of recognition, but T. hydatigena antigens were undetectable for a longer period, and reached lower O.D. values with EgC1. Interestingly, fecal samples from two experimentally infected dogs with Echinococcus multilocularis were not recognized by the EgC1 assay, suggesting a potential value as species-specific diagnostic tool.