Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 478(3): 1153-7, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27543204

RESUMO

Recombinase-mediated homologous recombination (HR) in which strands are exchanged between two similar or identical DNA molecules is essential for maintaining genome fidelity and generating genetic diversity. It is believed that HR comprises two distinct stages: an initial alignment with stringent homology checking followed by stepwise heteroduplex expansion. If and how homology checking takes place during heteroduplex expansion, however, remains unknown. In addition, the number of base pairs (bp) involved in each step is still under debate. By using single-molecule approaches to catch transient intermediates in RecA-mediated HR with different degrees of homology, we show that (i) the expansion proceeds with step sizes of multiples of 3 bp, (ii) the step sizes follow wide distributions that are similar to that of initial alignment lengths, and (iii) each distribution can be divided into a short-scale and a long-scale part irrespective of the degree of homology. Our results suggest an iterative mechanism of strand exchange in which ssDNA-RecA filament interrogates double-stranded DNA using a short tract (6-15 bp) for quick checking and a long tract (>18 bp) for stringent sequence comparison. The present work provides novel insights into the physical and structural bases of DNA recombination.


Assuntos
Recombinação Homóloga , Recombinases Rec A/química , Recombinases Rec A/metabolismo , Homologia de Sequência do Ácido Nucleico , Pareamento Incorreto de Bases , Transferência Ressonante de Energia de Fluorescência , Fenômenos Magnéticos , Ácidos Nucleicos Heteroduplexes
2.
Nucleic Acids Res ; 44(9): 4330-9, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27098034

RESUMO

Pif1 is a prototypical member of the 5' to 3' DNA helicase family conserved from bacteria to human. It has a high binding affinity for DNA, but unwinds double-stranded DNA (dsDNA) with a low processivity. Efficient DNA unwinding has been observed only at high protein concentrations that favor dimerization of Pif1. In this research, we used single-molecule fluorescence resonance energy transfer (smFRET) and magnetic tweezers (MT) to study the DNA unwinding activity of Saccharomyces cerevisiae Pif1 (Pif1) under different forces exerted on the tails of a forked dsDNA. We found that Pif1 can unwind the forked DNA repetitively for many unwinding-rezipping cycles at zero force. However, Pif1 was found to have a very limited processivity in each cycle because it loosened its strong association with the tracking strand readily, which explains why Pif1 cannot be observed to unwind DNA efficiently in bulk assays at low protein concentrations. The force enhanced the unwinding rate and the total unwinding length of Pif1 significantly. With a force of 9 pN, the rate and length were enhanced by more than 3- and 20-fold, respectively. Our results imply that the DNA unwinding activity of Pif1 can be regulated by force. The relevance of this characteristic of Pif1 to its cellular functions is discussed.


Assuntos
DNA Helicases/química , Proteínas de Saccharomyces cerevisiae/química , Trifosfato de Adenosina/química , DNA Fúngico/química , Cinética , Saccharomyces cerevisiae/enzimologia
3.
Nucleic Acids Res ; 43(7): 3736-46, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25765643

RESUMO

There are lines of evidence that the Bloom syndrome helicase, BLM, catalyzes regression of stalled replication forks and disrupts displacement loops (D-loops) formed during homologous recombination (HR). Here we constructed a forked DNA with a 3' single-stranded gap and a 5' double-stranded handle to partly mimic a stalled DNA fork and used magnetic tweezers to study BLM-catalyzed unwinding of the forked DNA. We have directly observed that the BLM helicase may slide on the opposite strand for some distance after duplex unwinding at different forces. For DNA construct with a long hairpin, progressive unwinding of the hairpin is frequently interrupted by strand switching and backward sliding of the enzyme. Quantitative study of the uninterrupted unwinding length (time) has revealed a two-state-transition mechanism for strand-switching during the unwinding process. Mutational studies revealed that the RQC domain plays an important role in stabilizing the helicase/DNA interaction during both DNA unwinding and backward sliding of BLM. Especially, Lys1125 in the RQC domain, a highly conserved amino acid among RecQ helicases, may be involved in the backward sliding activity. We have also directly observed the in vitro pathway that BLM disrupts the mimic stalled replication fork. These results may shed new light on the mechanisms for BLM in DNA repair and homologous recombination.


Assuntos
RecQ Helicases/metabolismo , Humanos , Mutação , Conformação Proteica , RecQ Helicases/química , RecQ Helicases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...