Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 15(2): 142-153, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36524843

RESUMO

The continuing threats of military conflicts and terrorism may involve the misuse of chemical weapons. The present study aims to use environmental samples to find evidence of the release of such agents at an incident scene. A novel approach was developed for identifying protein adducts in plants. Basil (Ocimum basilicum), bay laurel leaf (Laurus nobilis) and stinging nettle (Urtica dioica) were exposed to 2.5 to 150 mg m-3 sulfur mustard, 2.5 to 250 mg m-3 sarin, and 0.5 to 25 g m-3 chlorine gas. The vapors of the selected chemicals were generated under controlled conditions in a dedicated set-up. After sample preparation and digestion, the samples were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) and liquid chromatography high resolution tandem mass spectrometry (LC-HRMS/MS), respectively. In the case of chlorine exposure, it was found that 3-chloro- and 3,5-dichlorotyrosine adducts were formed. As a result of sarin exposure, the o-isopropyl methylphosphonic acid adduct to tyrosine could be analyzed, and after sulfur mustard exposure the N1- and N3-HETE-histidine adducts were identified. The lowest vapor exposure levels for which these plant adducts could be detected, were 2.5 mg m-3 for sarin, 50 mg m-3 for chlorine and 12.5 mg m-3 for sulfur mustard. Additionally, protein adducts following a liquid exposure of only 2 nmol Novichock A-234, 0.4 nmol sarin and 0.2 nmol sulfur mustard could still be observed. For both vapor and liquid exposure, the amount of adduct formed increased with the level of exposure. In all cases synthetic reference standards were used for unambiguous identification. The window of opportunity for investigation of agent exposure through the analysis of plant material was found to be remarkably long. Even three months after the actual exposure, the biomarkers could still be detected in the living plants, as well as in dried leaves. An important benefit of the current method is that a relatively simple and generic sample work-up procedure can be applied for all agents studied. In conclusion, the presented work clearly demonstrates the possibility of analyzing chemical warfare agent biomarkers in plants, which is useful for forensic reconstructions, including the investigation into alleged use in conflict areas.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Substâncias para a Guerra Química/toxicidade , Substâncias para a Guerra Química/análise , Substâncias para a Guerra Química/química , Gás de Mostarda/toxicidade , Gás de Mostarda/análise , Gás de Mostarda/química , Cromatografia Líquida/métodos , Sarina , Cloro , Espectrometria de Massas em Tandem/métodos , Biomarcadores
2.
Chem Res Toxicol ; 35(6): 1070-1079, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35622957

RESUMO

Chlorine is a widely available industrial chemical and involved in a substantial number of cases of poisoning. It has also been used as a chemical warfare agent in military conflicts. To enable forensic verification, the persistent biomarkers 3-chlorotyrosine and 3,5-dichlorotyrosine in biomedical samples could be detected. An important shortfall of these biomarkers, however, is the relatively high incidence of elevated levels of chlorinated tyrosine residues in individuals with inflammatory diseases who have not been exposed to chlorine. Therefore, more reliable biomarkers are necessary to distinguish between endogenous formation and exogeneous exposure. The present study aims to develop a novel diagnostic tool for identifying site-specific chlorinated peptides as a more unambiguous indicator of exogeneous chlorine exposure. Human blood plasma was exposed in vitro to various chlorine concentrations, and the plasma proteins were subsequently digested by pronase, trypsin, or pepsin. After sample preparation, the digests were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) and liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). In line with other studies, low levels of 3-chlorotyrosine and 3,5-dichlorotyrosine were found in blank plasma samples in this study. Therefore, 50 site-specific biomarkers were identified, which could be used as more unambiguous biomarkers for chlorine exposure. Chlorination of the peptides TY*ETTLEK, Y*KPGQTVK, Y*QQKPGQAPR, HY*EGSTVPEK, and Y*LY*EIAR could already be detected at moderate in vitro chlorine exposure levels. In addition, the latter two peptides were found to have dichlorinated fragments. Especially, Y*LY*EIAR, with a distinct chlorination pattern in the MS spectra, could potentially be used to differentiate exogeneous exposure from endogenous causes as other studies reported that this part of human serum albumin is nitrated rather than chlorinated under physiological conditions. In conclusion, trypsin digestion combined with high-resolution MS analysis of chlorinated peptides could constitute a valuable technique for the forensic verification of exposure to chlorine.


Assuntos
Cloro , Espectrometria de Massas em Tandem , Biomarcadores , Cloro/química , Cromatografia Líquida , Humanos , Plasma/metabolismo , Tripsina/metabolismo , Tirosina/química
3.
J Proteome Res ; 20(10): 4728-4745, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469172

RESUMO

Chronic low-dose exposure to organophosphorus pesticides is associated with the risk of neurodegenerative disease. The mechanism of neurotoxicity is independent of acetylcholinesterase inhibition. Adducts on tyrosine, lysine, threonine, and serine can occur after exposure to organophosphorus pesticides, the most stable being adducts on tyrosine. Rabbit monoclonal 1C6 to diethoxyphosphate-modified tyrosine (depY) was created by single B cell cloning. The amino acid sequence and binding constant (Kd 3.2 × 10-8 M) were determined. Cultured human neuroblastoma SH-SY5Y and mouse neuroblastoma N2a cells incubated with a subcytotoxic dose of 10 µM chlorpyrifos oxon contained depY-modified proteins detected by monoclonal 1C6 on Western blots. depY-labeled peptides from tryptic digests of cell lysates were immunopurified by binding to immobilized 1C6. Peptides released with 50% acetonitrile and 1% formic acid were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) on an Orbitrap Fusion Lumos mass spectrometer. Protein Prospector database searches identified 51 peptides modified on tyrosine by diethoxyphosphate in SH-SY5Y cell lysate and 73 diethoxyphosphate-modified peptides in N2a cell lysate. Adducts appeared most frequently on the cytoskeleton proteins tubulin, actin, and vimentin. It was concluded that rabbit monoclonal 1C6 can be useful for studies that aim to understand the mechanism of neurotoxicity resulting from low-dose exposure to organophosphorus pesticides.


Assuntos
Doenças Neurodegenerativas , Praguicidas , Acetilcolinesterase , Animais , Linfócitos B , Células Cultivadas , Clorpirifos/análogos & derivados , Cromatografia Líquida , Clonagem Molecular , Camundongos , Compostos Organofosforados , Peptídeos , Praguicidas/toxicidade , Espectrometria de Massas em Tandem
4.
Chem Res Toxicol ; 34(8): 1926-1932, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34255498

RESUMO

Novichok (NV) nerve agents were recently added to the list of Schedule 1 chemicals of the Chemical Weapons Convention. There is a well-accepted method for assessment of nerve agent exposure based on mass spectrometric analysis of a nonapeptide with the serine-198 residue modified by the nerve agent, but this approach has not yet been reported for the class of NV agents and requires the availability of reference standards, which may be a limitation for NV agent exposure assessment. Thus, a goal of this study was to first verify the utility of the nonapeptide method for the characterization of human plasma samples exposed in vitro to the NV agents A-230, A-232, and A-234. A second aim was to evaluate the possibility of identifying unknown exposures by applying precursor ion scanning in combination with high resolution mass spectrometry (HRMS). Thus, precursor ion scanning, with a generic fragment ion (m/z 778) of the nonapeptide, was used to pinpoint any modified nonapeptide, while HRMS was used for structural elucidation of the adduct moiety. By this approach, use of HRMS enabled differentiation between adducts of agents with similar molecular masses. A new unique feature that could be exploited for NV nonapeptide analysis was that the modification was released from the peptide during fragmentation in the mass spectrometer and was detected in the low-mass region of the mass spectrum. This low-mass region was extremely informative and contributed to the assignment of the structure of the particular agent used, which is especially important in case no reference materials are available. The presented method is important for verification purposes by the Organisation for Prohibition of Chemical Weapons (OPCW), e.g., in case of investigations of alleged use of NV agents, and for regular forensic investigations.


Assuntos
Butirilcolinesterase/metabolismo , Agentes Neurotóxicos/metabolismo , Organofosfatos/metabolismo , Peptídeos/metabolismo , Exposição Ambiental/análise , Ensaios Enzimáticos , Humanos
5.
Anal Bioanal Chem ; 413(15): 4023-4036, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33903945

RESUMO

The primary aim of this study was to identify biomarkers of exposure to some so-called Schedule 1 sulfur mustard (HD) analogues, in order to facilitate and expedite their retrospective analysis in case of alleged use of such compounds. Since these HD analogues can be regarded as model compounds for possible impurities of HD formed during synthesis processes, the secondary aim was to explore to which extent these biomarkers can be used for chemical provenancing of HD in case biomedical samples are available. While the use of chemical attribution signatures (CAS) for neat chemicals or for environmental samples has been addressed quite frequently, the use of CAS for investigating impurities in biomedical samples has been addressed only scarcely. Human plasma was exposed to each of the five HD analogues. After pronase or proteinase K digestion of precipitated protein and sample work-up, the histidine (His) and tripeptide (CPF) adducts to proteins were analyzed, respectively. Adducts of the analogues could still be unambiguously identified next to the main HD adducts in processed plasma samples after exposure to HD mixed with each of the analogues, at a 1% level relative to HD. In conclusion, we have identified plasma protein adducts of a number of HD analogues, which can be used as biomarkers to assess an exposure to these Schedule 1 chemicals. We have shown that adducts of these analogues can still be analyzed after work-up of plasma samples which had been exposed to these analogues in a mixture with HD, supporting the hypothesis that biomedical sample analysis might be useful for chemical provenancing.


Assuntos
Proteínas Sanguíneas/química , Espectrometria de Massas/métodos , Gás de Mostarda/análogos & derivados , Biomarcadores/análise , Substâncias para a Guerra Química/análise , Humanos , Gás de Mostarda/química
7.
Arch Toxicol ; 93(2): 435-451, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30456486

RESUMO

Oxidative stress leads to the activation of the Nuclear factor-erythroid-2-related factor 2 (Nrf2) pathway. While most studies have focused on the activation of the Nrf2 pathway after single chemical treatment, little is known about the dynamic regulation of the Nrf2 pathway in the context of repeated exposure scenarios. Here we employed single cell live imaging to quantitatively monitor the dynamics of the Nrf2 pathway during repeated exposure, making advantage of two HepG2 fluorescent protein reporter cell lines, expressing GFP tagged Nrf2 or sulfiredoxin 1 (Srxn1), a direct downstream target of Nrf2. High throughput live confocal imaging was used to measure the temporal dynamics of these two components of the Nrf2 pathway after repeated exposure to an extensive concentration range of diethyl maleate (DEM) and tert-butylhydroquinone (tBHQ). Single treatment with DEM or tBHQ induced Nrf2 and Srxn1 over time in a concentration-dependent manner. The Nrf2 response to a second treatment was lower than the response to the first exposure with the same concentration, indicating that the response is adaptive. Moreover, a limited fraction of individual cells committed themselves into the Nrf2 response during the second treatment. Despite the suppression of the Nrf2 pathway, the second treatment resulted in a three-fold higher Srxn1-GFP response compared to the first treatment, with all cells participating in the response. While after the first treatment Srxn1-GFP response was linearly related to Nrf2-GFP nuclear translocation, such a linear relationship was less clear for the second exposure. siRNA-mediated knockdown demonstrated that the second response is dependent on the activity of Nrf2. Several other, clinically relevant, compounds (i.e., sulphorophane, nitrofurantoin and CDDO-Me) also enhanced the induction of Srxn1-GFP upon two consecutive repeated exposure. Together the data indicate that adaptation towards pro-oxidants lowers the Nrf2 activation capacity, but simultaneously primes cells for the enhancement of an antioxidant response which depends on factors other than just Nrf2. These data provide further insight in the overall dynamics of stress pathway activation after repeated exposure and underscore the complexity of responses that may govern repeated dose toxicity.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Xenobióticos/toxicidade , Relação Dose-Resposta a Droga , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células Hep G2 , Humanos , Hidroquinonas/administração & dosagem , Hidroquinonas/toxicidade , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator de Transcrição MafF/genética , Fator de Transcrição MafG/genética , Maleatos/administração & dosagem , Maleatos/toxicidade , Imagem Molecular/métodos , Fator 2 Relacionado a NF-E2/genética , Proteínas Nucleares/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas Repressoras/genética , Análise de Célula Única/métodos , Testes de Toxicidade , Xenobióticos/administração & dosagem
8.
Toxins (Basel) ; 10(12)2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30551641

RESUMO

Botulinum neurotoxin type-A (BoNT-A) blocks the release of acetylcholine from peripheral cholinergic nerve terminals and is an important option for the treatment of disorders characterised by excessive cholinergic neuronal activity. Several BoNT-A products are currently marketed, each with unique manufacturing processes, excipients, formulation, and non-interchangeable potency units. Nevertheless, the effects of all the products are mediated by the 150 kDa BoNT-A neurotoxin. We assessed the quantity and light chain (LC) activity of BoNT-A in three commercial BoNT-A products (Dysport®; Botox®; Xeomin®). We quantified 150 kDa BoNT-A by sandwich ELISA and assessed LC activity by EndoPep assay. In both assays, we assessed the results for the commercial products against recombinant 150 kDa BoNT-A. The mean 150 kDa BoNT-A content per vial measured by ELISA was 2.69 ng/500 U vial Dysport®, 0.90 ng/100 U vial Botox®, and 0.40 ng/100 U vial Xeomin®. To present clinically relevant results, we calculated the 150 kDa BoNT-A/US Food and Drug Administration (FDA)-approved dose in adult upper limb spasticity: 5.38 ng Dysport® (1000 U; 2 × 500 U vials), 3.60 ng Botox® (400 U; 4 × 100 U vials), and 1.61 ng Xeomin® (400 U; 4 × 100 U vials). EndoPep assay showed similar LC activity among BoNT-A products. Thus, greater amounts of active neurotoxin are injected with Dysport®, at FDA-approved doses, than with other products. This fact might explain the long duration of action reported across multiple indications, which benefits patients, caregivers, clinicians, and healthcare systems.


Assuntos
Toxinas Botulínicas Tipo A/análise , Fármacos Neuromusculares/análise , Neurotoxinas/análise , Ensaio de Imunoadsorção Enzimática , Humanos , Espasticidade Muscular/tratamento farmacológico , Resultado do Tratamento
9.
Forensic Toxicol ; 36(1): 61-71, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29367863

RESUMO

During the United Nations fact-finding mission to investigate the alleged use of chemical warfare agents in the Syrian Arab Republic in 2013, numerous tissues from a deceased female victim, who had displayed symptoms of cholinergic crisis, were collected. The Organisation for the Prohibition of Chemical Weapons (OPCW) authorized two specialized laboratories in the Netherlands and Germany for forensic analysis of these samples. Diverse modern mass spectrometry (MS)-based procedures in combination with either liquid chromatography (LC) or gas chromatography (GC) separation were applied. A variety of biotransformation products of the nerve agent sarin was detected, including the hydrolysis product O-isopropyl methylphosphonic acid (IMPA) as well as covalent protein adducts with e.g., albumin and human butyrylcholinesterase (hBChE). IMPA was extracted after sample acidification by solid-phase extraction and directly analyzed by LC-tandem-MS with negative electrospray ionization (ESI). Protein adducts were found, either by fluoride-induced reactivation applying GC-MS techniques or by LC-MS-based detection after positive ESI for proteolyzed proteins yielding phosphonylated tyrosine residues or a specific phosphonylated hBChE-derived nonapeptide. These experimental results provided unambiguous evidence for a systemic intoxication and were the first proving the use of sarin in the ongoing bellicose conflict. This scenario underlines the requirement for qualified and specialized analytical laboratories to face repeated violation of the Chemical Weapons Convention.

10.
Chem Res Toxicol ; 30(4): 1076-1084, 2017 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-28267914

RESUMO

Organophosphorus (OP) nerve agents continue to be a threat at home and abroad during the war against terrorism. Human exposure to nerve agents such as VX results in a cascade of toxic effects relative to the exposure level including ocular miosis, excessive secretions, convulsions, seizures, and death. The primary mechanism behind these overt symptoms is the disruption of cholinergic pathways. While much is known about the primary toxicity mechanisms of nerve agents, there remains a paucity of information regarding impacts on other pathways and systemic effects. These are important for establishing a comprehensive understanding of the toxic mechanisms of OP nerve agents. To identify novel proteins that interact with VX, and that may give insight into these other mechanisms, we used activity-based protein profiling (ABPP) employing a novel VX-probe on lysates from rat heart, liver, kidney, diaphragm, and brain tissue. By making use of a biotin linked VX-probe, proteins covalently bound by the probe were isolated and enriched using streptavidin beads. The proteins were then digested, labeled with isobarically distinct tandem mass tag (TMT) labels, and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Quantitative analysis identified 132 bound proteins, with many proteins found in multiple tissues. As with previously published ABPP OP work, monoacylglycerol lipase associated proteins and fatty acid amide hydrolase (FAAH) were shown to be targets of VX. In addition to these two and other predicted neurotransmitter-related proteins, a number of proteins involved with energy metabolism were identified. Four of these enzymes, mitochondrial isocitrate dehydrogenase 2 (IDH2), isocitrate dehydrogenase 3 (IDH3), malate dehydrogenase (MDH), and succinyl CoA (SCS) ligase, were assayed for VX inhibition. Only IDH2 NADP+ activity was shown to be inhibited directly. This result is consistent with other work reporting animals exposed to OP compounds exhibit reduced IDH activity. Though clearly a secondary mechanism for toxicity, this is the first time VX has been shown to directly interfere with energy metabolism. Taken together, the ABPP work described here suggests the discovery of novel protein-agent interactions, which could be useful for the development of novel diagnostics or potential adjuvant therapeutics.


Assuntos
Agentes Neurotóxicos/química , Compostos Organotiofosforados/química , Proteínas/química , Amidoidrolases/química , Amidoidrolases/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão , Coração/efeitos dos fármacos , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Malato Desidrogenase/química , Malato Desidrogenase/metabolismo , Masculino , Agentes Neurotóxicos/toxicidade , Compostos Organotiofosforados/toxicidade , Peptídeos/análise , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
11.
Toxicol Lett ; 239(1): 41-52, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26272752

RESUMO

Detoxification mechanisms of the chemical warfare agent cyclosarin (GF) in presence of 6-OxP-CD were investigated in detail in in vitro model systems. Most important finding was the preference of 6-Ox-P-CD to eliminate the more toxic (-)-GF. However, elimination of GF enantiomers was dependent on the 6-OxP-CD:GF ratios showing decreasing stereoselectivity and speed of the reaction with increasing GF concentrations. Formation of covalent mono, bis, tris and tetrakis conjugates ((CHMP)n-6-OxP-CD) and appearance of small molecular fragments (SMF) as possible decomposition products after consumption of 6-OxP-CD could be observed.. Interestingly, the non-toxic metabolite O-cyclohexyl methylphosphonic acid (CHMPA) and covalent mono and bis conjugates of 6-OxP-CD and GF were immediately formed, indicating that GF elimination proceeds along different pathways. These important new insights provide information about the mode of action of 6-Ox-P-CD including the role of the pyridinium aldoxime group on the cyclodextrin ring. They are the basis for further investigations in biological media, which could eventually lead to approval of 6-OxP-CD as a new antidote against nerve agent toxicity.


Assuntos
Antídotos/farmacologia , Compostos Organofosforados/farmacocinética , Oximas/farmacologia , beta-Ciclodextrinas/farmacologia , Compostos Organofosforados/metabolismo , Oximas/química , Estereoisomerismo , beta-Ciclodextrinas/química
12.
J Mass Spectrom ; 50(4): 683-92, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26149113

RESUMO

Tri-ortho-cresyl phosphate (ToCP) is an anti-wear, flame retardant additive used in industrial lubricants, hydraulic fluids and gasoline. The neurotoxic effects of ToCP arise from the liver-activated metabolite 2-(o-cresyl)-4H-1,3,2-benzodioxaphosphoran-2-one (cresyl saligenin phosphate or CBDP), which inhibits esterase enzymes including butyrylcholinesterase (BChE). Following BChE adduction, CBDP undergoes hydrolysis to form the aged adduct ortho-cresyl phosphoserine (oCP-BChE), thus providing a biomarker of CBDP exposure. Previous studies have identified ToCP in aircraft cabin and cockpit air, but assessing human exposure has been hampered by the lack of a laboratory assay to confirm exposure. This work presents the development of an immunomagnetic-UHPLC-MS/MS method for the quantitation of unadducted BChE and the long-term CBDP biomarker, oCP-BChE, in human serum. The method has a reportable range from 2.0 ng/ml to 150 ng/ml, which is consistent with the sensitivity of methods used to detect organophosphorus nerve agent protein adducts. The assay demonstrated high intraday and interday accuracy (≥85%) and precision (RSD ≤ 15%) across the calibration range. The method was developed for future analyses of potential human exposure to CBDP. Analysis of human serum inhibited in vitro with CBDP demonstrated that the oCP-BChE adduct was stable for at least 72 h at 4, 22 and 37 °C. Compared to a previously reported assay, this method requires 75% less sample volume, reduces analysis time by a factor of 20 and demonstrates a threefold improvement in sensitivity. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Butirilcolinesterase/sangue , Separação Imunomagnética/métodos , Espectrometria de Massas em Tandem/métodos , Tritolil Fosfatos/sangue , Butirilcolinesterase/química , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Limite de Detecção , Reprodutibilidade dos Testes , Tritolil Fosfatos/química
13.
Chem Biol Interact ; 237: 141-50, 2015 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-26070416

RESUMO

In the current paper we show that exposure of human callus to isocyanates leads to covalent modifications within keratin proteins. Mass spectrometric analyses of pronase digests of keratin isolated from exposed callus show that both mono- and di-adducts (for di-isocyanates) are predominantly formed on the ε-amino group of lysine. In addition, numerous modified tryptic keratin fragments were identified, demonstrating rather random lysine modification. Interestingly, preliminary experiments demonstrate that in case of MDI a similar lysine di-adduct was formed with lung elastin. Our data support the hypothesis that skin sensitization through antigenic modifications of skin proteins by isocyanates could play a role in occupational isocyanate-induced asthma. It is further envisaged that the elucidated adducts will also have great potential for use as biomarkers to assess skin exposure to isocyanates. Advantageously, the various lysine adducts display the presence of a characteristic daughter fragment at m/z 173.1 [lysine-NCO](+), enabling generic and rapid screening for exposure to isocyanates.


Assuntos
Isocianatos/farmacologia , Queratinas/metabolismo , Pele/efeitos dos fármacos , Espectrometria de Massas por Ionização por Electrospray/métodos , Sequência de Aminoácidos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cromatografia Líquida , Humanos , Queratinas/química , Dados de Sequência Molecular , Espectroscopia de Prótons por Ressonância Magnética , Pele/metabolismo
14.
Chem Res Toxicol ; 28(4): 711-21, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25706813

RESUMO

Tri-ortho-cresyl phosphate (ToCP) is a multipurpose organophosphorus compound that is neurotoxic and suspected to be involved in aerotoxic syndrome in humans. It has been reported that not ToCP itself but a metabolite of ToCP, namely, 2-(ortho-cresyl)-4H-1,2,3-benzodioxaphosphoran-2-one (CBDP), may be responsible for this effect as it can irreversibly bind to human butyrylcholinesterase (BuChE) and human acetylcholinesterase (AChE). The bioactivation of ToCP into CBDP involves Cytochrome P450s (P450s). However, the individual human P450s responsible for this bioactivation have not been identified yet. In the present study, we aimed to investigate the metabolism of ToCP by different P450s and to determine the inhibitory effect of the in vitro generated ToCP-metabolites on human BuChE and AChE. Human liver microsomes, rat liver microsomes, and recombinant human P450s were used for that purpose. The recombinant P450s 2B6, 2C18, 2D6, 3A4 and 3A5 showed highest activity of ToCP-bioactivation to BuChE-inhibitory metabolites. Inhibition experiments using pooled human liver microsomes indicated that P450 3A4 and 3A5 were mainly involved in human hepatic bioactivation of ToCP. In addition, these experiments indicated a minor role for P450 1A2. Formation of CBDP by in-house expressed recombinant human P450s 1A2 and 3A4 was proven by both LC-MS and GC-MS analysis. When ToCP was incubated with P450 1A2 and 3A4 in the presence of human BuChE, CBDP-BuChE-adducts were detected by LC-MS/MS which were not present in the corresponding control incubations. These results confirmed the role of human P450s 1A2 and 3A4 in ToCP metabolism and demonstrated that CBDP is the metabolite responsible for the BuChE inactivation. Interindividual differences at the level of P450 1A2 and 3A4 might play an important role in the susceptibility of humans in developing neurotoxic effects, such as aerotoxic syndrome, after exposure to ToCP.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Tritolil Fosfatos/farmacocinética , Ativação Metabólica , Animais , Butirilcolinesterase/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Ratos , Tritolil Fosfatos/metabolismo , Tritolil Fosfatos/toxicidade
15.
J Anal Toxicol ; 38(1): 8-15, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24201816

RESUMO

Here, we report an enhanced throughput method for the diagnosis of human exposure to sulfur mustard. A hydroxyethylthioethyl (HETE) ester-adducted tripeptide, produced by pronase digestion of human serum albumin, was selected as the quantitative exposure biomarker. Cibacron Blue enrichment was developed from an established cartridge method into a 96-well plate format, increasing throughput and ruggedness. This new method decreased sample volume 2.5-fold. Addition of a precipitation and solid-phase extraction concentration step increased the sensitivity of the method. With the conversion to a 96-well plate and optimization of chromatography, the method resulted in a 3-fold decrease in analysis time. Inclusion of a confirmation ion has increased specificity. The method was found to be linear between 0.050 and 50 µM sulfur mustard exposure with a precision for both quality control samples of ≤6.5% relative standard deviation and an accuracy of >96%. The limit of detection (3So) was calculated to be ∼0.0048 µM, an exposure value similar to that of the HETE-albumin adduct method first described by Noort and co-workers (Noort et al., 1999; Noort el al., 2004) which used protein precipitation to isolate albumin. A convenience set of 124 plasma samples from healthy unexposed individuals was analyzed using this method to assess background levels of exposure to sulfur mustard; no positive results were detected.


Assuntos
Exposição Ambiental/análise , Ensaios de Triagem em Larga Escala/métodos , Gás de Mostarda/toxicidade , Albumina Sérica/química , Espectrometria de Massas em Tandem/métodos , Biomarcadores/sangue , Calibragem , Humanos , Proteômica , Estudos Retrospectivos , Sensibilidade e Especificidade , Extração em Fase Sólida , Manejo de Espécimes
16.
Chem Biol Interact ; 203(1): 19-23, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-22922115

RESUMO

Organophosphorus nerve agents irreversibly inhibit cholinesterases. Phosphylation of the catalytic serine can be reversed by the mean of powerful nucleophiles like oximes. But the phosphyl adduct can undergo a rapid spontaneous reaction leading to an aged enzyme, i.e., a conjugated enzyme that is no longer reactivable by oximes. One strategy to regain reactivability is to alkylate the phosphylic adduct. Specific alkylating molecules were synthesized and the crystal structures of the complexes they form with soman-aged human butyrylcholinesterase were solved. Although the compounds bind in the active site gorge of the aged enzyme, the orientation of the alkylating function appears to be unsuitable for efficient alkylation of the phosphylic adduct. However, these crystal structures provide key information to design efficient alkylators of aged-butyrylcholinesterase and specific reactivators of butyrylcholinesterase.


Assuntos
Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Alquilação , Domínio Catalítico , Inibidores da Colinesterase/química , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/farmacologia , Cristalografia por Raios X , Humanos , Cinética , Ligantes , Modelos Moleculares , Fosforilação , Compostos de Pralidoxima/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Serina/química , Soman/toxicidade
17.
Chem Biol Interact ; 203(1): 149-53, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23085122

RESUMO

Low volatile organophosphorous nerve agents such as VX, will most likely enter the body via the skin. The pharmacokinetics of drugs such as oximes, atropine and diazepam, are not aligned with the variable and persistent toxicokinetics of the agent. Repeated administration of these drugs showed to improve treatment efficacy compared to a single injection treatment. Because of the effectiveness of continuous treatment, it was investigated to what extent a subchronic pretreatment with carbamate (pyridostigmine or physostigmine combined with either procyclidine or scopolamine) would protect against percutaneous VX exposure. Inclusion of scopolamine in the pretreatment prevented seizures in all animals, but none of the pretreatments affected survival time or the onset time of cholinergic signs. These results indicate that percutaneous poisoning with VX requires additional conventional treatment in addition to the current pretreatment regimen. Decontamination of VX-exposed skin is one of the most important countermeasures to mitigate the effects of the exposure. To evaluate the window of opportunity for decontamination, the fielded skin decontaminant Reactive Skin Decontaminant Lotion (RSDL) was tested at different times in hairless guinea pigs percutaneously challenged with 4× LD50 VX in IPA. The results showed that RSDL decontamination at 15 min after exposure could not prevent progressive blood cholinesterase inhibition and therefore would still require additional treatment. A similar decontamination regimen with RSDL at 90 min showed that it still might effectively increase the time window of opportunity for treatment. In conclusion, the delay in absorption presents a window of opportunity for decontamination and treatment. The continuous release of VX from the skin presents a significant challenge for efficacious therapy, which should ideally consist of thorough decontamination and continuous treatment.


Assuntos
Substâncias para a Guerra Química/intoxicação , Descontaminação/métodos , Intoxicação por Organofosfatos/terapia , Compostos Organotiofosforados/intoxicação , Acetilcolinesterase/sangue , Animais , Butirilcolinesterase/sangue , Substâncias para a Guerra Química/farmacocinética , Inibidores da Colinesterase/farmacocinética , Inibidores da Colinesterase/intoxicação , Modelos Animais de Doenças , Cobaias , Intoxicação por Organofosfatos/metabolismo , Intoxicação por Organofosfatos/prevenção & controle , Compostos Organotiofosforados/farmacocinética , Prociclidina/administração & dosagem , Brometo de Piridostigmina/administração & dosagem , Escopolamina/administração & dosagem , Pele/efeitos dos fármacos , Pele/metabolismo , Fatores de Tempo
18.
Bioorg Med Chem ; 20(20): 6059-62, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22989907

RESUMO

A series of gramicidin S derivatives 4-15 are presented that have four ornithine residues as polar protonated side chains and two central hydrophobic amino acids with unaltered turn regions. These peptides were screened against human erthrocytes and our standard panel of Gram negative- and Gram positive bacteria, including four MRSA strains. Based on the antibacterial- and hemolytic data, peptides 13 and 14 have an improved biological profile compared to the clinically applied topical antibiotic gramicidin S.


Assuntos
Antibacterianos/química , Gramicidina/análogos & derivados , Gramicidina/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Eritrócitos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Gramicidina/síntese química , Gramicidina/farmacologia , Hemólise , Humanos , Testes de Sensibilidade Microbiana , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacologia
19.
Chem Biol Interact ; 197(2-3): 93-102, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22521715

RESUMO

Methods to unequivocally assess and quantify exposure to organophosphate anti-cholinesterase agents are highly valuable, either from a biomonitoring or a forensic perspective. Since for both OP pesticides and various nerve agents the skin is a predominant route of entry, we hypothesized that proteins in the skin might represent an ideal source of unequivocal and persistent biomarkers for exposure to these compounds. In this exploratory study we show that keratin proteins in human skin are relevant binding sites for organophosphates. The thick cornified epithelium of human plantar skin (callus) was exposed to a selection of relevant organophosphorus compounds and keratin proteins were subsequently extracted. After carboxymethylation of cysteine residues, enzymatic digestion of the keratins with pronase and trypsin was performed and the resulting amino acid and peptides were analyzed to assess whether covalent adducts had formed. LC-tandem MS analysis of the pronase digests demonstrated that tyrosine and to a lesser extent serine residues were selectively modified by organophosphate pesticides (both phosphorothioates and the corresponding oxon forms) under physiological conditions. In addition, modification of tyrosine with the nerve agent VX was unequivocally assessed. In order to elucidate specific binding sites, LC-tandem MS analysis of trypsin digests showed two separate tryptic keratin fragments, i.e. LASY*LDK and SLY*GLGGSK, with Y* the modified tyrosine residues, originating from keratin 1/6 and keratin 10, respectively. These preliminary findings, revealing novel binding targets for anti-cholinesterase organophosphates, will form a firm basis for the development of novel (non-invasive) methods for assessment of exposure to organophosphates. Whether this binding will also have biological implications remains an issue for further investigations.


Assuntos
Queratinas/química , Queratinas/metabolismo , Organofosfatos/toxicidade , Pele/efeitos dos fármacos , Sítios de Ligação , Substâncias para a Guerra Química/toxicidade , Cisteína/química , Humanos , Queratinas/análise , Organofosfatos/metabolismo , Compostos Organotiofosforados/toxicidade , Paraoxon/metabolismo , Paraoxon/farmacologia , Fragmentos de Peptídeos/química , Pronase/química , Serina/química , Pele/química , Espectrometria de Massas em Tandem/métodos , Tripsina/metabolismo , Tirosina/química
20.
Toxicol In Vitro ; 25(8): 2080-7, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21945045

RESUMO

The aim of the present study was to investigate toxic effects following phosgene exposure of human epithelial lung cells (A549) in vitro using a CULTEX® system. In particular, toxic effects regarding early biomarkers emerging during the latency period following exposure might be of great value for medical treatment. Cells cultured on semi-permeable membranes were directly exposed at the liquid-air interface to different concentrations of phosgene, or dry medical air. Cell membrane integrity (leakage of LDH), metabolic activity (reduction of Alamar Blue), oxidative damage (GSH, and HO-1, in cell lysates), and release of IL-8, were studied. For most of the above-mentioned biological end-point markers, significant changes could be assessed following a 20 min exposure to 1.0 ppm and 2.0 ppm phosgene. Moreover, except for IL-8, all biological marker profiles showed to be in line with results obtained by others in animal studies. The C×t value of 40 ppm min appeared to be constant. The overall results suggest that at 4 h post-exposure a maximal level of toxicity was achieved. Our results demonstrate the suitability of a CULTEX® system to detect toxic effects induced by phosgene on human epithelial lung cells, which may contribute to the discovery of early biomarkers for new medical countermeasures.


Assuntos
Câmaras de Exposição Atmosférica , Substâncias para a Guerra Química/toxicidade , Células Epiteliais/efeitos dos fármacos , Fosgênio/toxicidade , Testes de Toxicidade/métodos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Interleucina-8/metabolismo , L-Lactato Desidrogenase/metabolismo , Pulmão/citologia , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...