Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 125: 104965, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808451

RESUMO

Tissue engineered bone solutions aim to overcome the limitations of autologous and allogeneic grafts. Decellularised tissues are produced by washing cellular components from human or animal tissue to produce an immunologically safe and biocompatible scaffold, capable of integration following implantation. A decellularisation procedure utilising low concentration sodium dodecyl sulphate (0.1% w/v) was applied to trabecular bone from human femoral heads (FH) and tibial plateaus (TP). Biological (histology, DNA quantification), biomechanical (compression testing) and structural (µCT) comparisons were made between decellularised and unprocessed cellular tissue. Total DNA levels of decellularised FH and TP bone were below 50 ng mg-1 dry tissue weight and nuclear material was removed. No differences were found between cellular and decellularised bone, from each anatomical region, for all the biomechanical and structural parameters investigated. Differences were found between cellular FH and TP and between decellularised FH and TP. Decellularised FH had a higher ultimate compressive stress, Young's modulus and 0.2% proof stress than decellularised TP (p = 0.001, 0.002, 0.001, Mann Whitney U test, MWU). The mineral density of cellular and decellularised TP bone was significantly greater than cellular and decellularised FH bone respectively (cellular: p = 0.001, decellularised: p < 0.001, MWU). The bone volume fraction and trabecular thickness of cellular and decellularised FH bone were significantly greater than cellular and decellularised TP bone respectively (cellular: p = 0.001, 0.005; decellularised: p < 0.001, <0.001, MWU). Characterisation of decellularised trabecular bone from different anatomical regions offers the possibility of product stratification, allowing selection of biomechanical properties to match particular anatomical regions undergoing bone graft procedures.


Assuntos
Transplante Ósseo , Resinas Acrílicas , Aloenxertos , Animais , Humanos
2.
Tissue Eng Part C Methods ; 26(11): 565-576, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33050844

RESUMO

Intervertebral disc (IVD) degeneration is a major cause of back pain. Current surgical interventions have limitations. An alternative approach is to replace degenerated IVDs with a natural biological scaffold. The removal of cellular components from human IVDs should render them nonimmunogenic upon implantation. The aim of this initial proof of technical feasibility study was to develop a decellularization protocol on bovine IVDs with endplates (EPs) and assess protocol performance before application of the protocol to human IVDs with attached EP and vertebral bone (VB). A decellularization protocol based on hypotonic low concentration sodium dodecyl sulfate (0.1% w/v) with proteinase inhibitors, freeze/thaw cycles, and nuclease and sonication treatments was applied to IVDs. Histological, biochemical, and biomechanical comparisons were made between cellular and decellularized tissue. Cell removal from bovine IVDs was demonstrated and total DNA levels of the decellularized inner annulus fibrosus (iAF), outer annulus fibrosus (oAF), and EP were 40.7 (±11.4), 25.9 (±3.8), and 29.3 (±3.1) ng.mg-1 dry tissue weight, respectively (n = 6, ±95% confidence level [CL]). These values were significantly lower than in cellular tissue. No significant difference in DNA levels between bovine cellular and decellularized nucleus pulposus (NP) was found. Glycosaminoglycans (GAGs) were largely retained in the NP, iAF, and oAF. Cyclic compression testing showed sufficient sensitivity to detect an increase in stiffness of bovine IVD postdecellularization (2957.2 ± 340.8 N.mm-1) (predecellularization: 2685.4 ± 263.1 N.mm-1; n = 5, 95% CL), but the difference was within natural tissue variation. Total DNA levels for all decellularized tissue regions of human IVDs (NP, iAF, oAF, EP, and VB) were below 50 ng.mg-1 dry tissue weight (range: 2 ng.mg-1, iAF to 29 ng.mg-1, VB) and the tissue retained high levels of GAGs. Further studies to assess the biocompatibility and regenerative potential of decellularized human IVDs in vitro and in vivo are now required; however, proof of technical feasibility has been demonstrated and the retention of bone in the IVD samples would allow incorporation of the tissue into the recipient spine. Impact statement Intervertebral disc (IVD) degeneration is a major cause of back pain. Current surgical treatments have limitations and relatively poor outcomes. An implantable cell-free biological scaffold, which will not invoke adverse immune responses, has the potential to preserve the natural mobility of the patient's spine and be regenerated with endogenous cells, preventing further degeneration and improving surgical outcomes. This study demonstrates, for the first time, that it is possible to create a cell-free human IVD biological scaffold with attached bone using decellularization technology, the first step toward the development of an implantable regenerative device for IVD replacement.


Assuntos
Degeneração do Disco Intervertebral/patologia , Disco Intervertebral/patologia , Adulto , Idoso , Animais , Fenômenos Biomecânicos , Bovinos , DNA/metabolismo , Feminino , Glicosaminoglicanos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade
3.
Science ; 322(5902): 709-13, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18927357

RESUMO

The nucleobase-cation-symport-1 (NCS1) transporters are essential components of salvage pathways for nucleobases and related metabolites. Here, we report the 2.85-angstrom resolution structure of the NCS1 benzyl-hydantoin transporter, Mhp1, from Microbacterium liquefaciens. Mhp1 contains 12 transmembrane helices, 10 of which are arranged in two inverted repeats of five helices. The structures of the outward-facing open and substrate-bound occluded conformations were solved, showing how the outward-facing cavity closes upon binding of substrate. Comparisons with the leucine transporter LeuT(Aa) and the galactose transporter vSGLT reveal that the outward- and inward-facing cavities are symmetrically arranged on opposite sides of the membrane. The reciprocal opening and closing of these cavities is synchronized by the inverted repeat helices 3 and 8, providing the structural basis of the alternating access model for membrane transport.


Assuntos
Actinomycetales/química , Proteínas de Bactérias/química , Proteínas de Transporte de Nucleobases/química , Simportadores/química , Actinomycetales/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cátions/química , Cátions/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Cristalografia por Raios X , Hidantoínas/química , Hidantoínas/metabolismo , Transporte de Íons , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Transporte de Nucleobases/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Sódio/metabolismo , Simportadores/metabolismo
4.
Lancet ; 361(9358): 637-44, 2003 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-12606174

RESUMO

BACKGROUND: Whipple's disease is a rare multisystem chronic infection, involving the intestinal tract as well as various other organs. The causative agent, Tropheryma whipplei, is a Gram-positive bacterium about which little is known. Our aim was to investigate the biology of this organism by generating and analysing the complete DNA sequence of its genome. METHODS: We isolated and propagated T whipplei strain TW08/27 from the cerebrospinal fluid of a patient diagnosed with Whipple's disease. We generated the complete sequence of the genome by the whole genome shotgun method, and analysed it with a combination of automatic and manual bioinformatic techniques. FINDINGS: Sequencing revealed a condensed 925938 bp genome with a lack of key biosynthetic pathways and a reduced capacity for energy metabolism. A family of large surface proteins was identified, some associated with large amounts of non-coding repetitive DNA, and an unexpected degree of sequence variation. INTERPRETATION: The genome reduction and lack of metabolic capabilities point to a host-restricted lifestyle for the organism. The sequence variation indicates both known and novel mechanisms for the elaboration and variation of surface structures, and suggests that immune evasion and host interaction play an important part in the lifestyle of this persistent bacterial pathogen.


Assuntos
Genoma , Bactérias Gram-Positivas/genética , Doença de Whipple/genética , Doença de Whipple/microbiologia , Feminino , Bactérias Gram-Positivas/isolamento & purificação , Bactérias Gram-Positivas/patogenicidade , Humanos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...