Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 12(6): e8975, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35784047

RESUMO

Species interactions underlie most ecosystem functions and are important for understanding ecosystem changes. Representing one type of species interaction, trophic networks were constructed from biodiversity monitoring data and known trophic links to assess how ecosystems have changed over time. The Baltic Sea is subject to many anthropogenic pressures, and low species diversity makes it an ideal candidate for determining how pressures change food webs. In this study, we used benthic monitoring data for 20 years (1980-1989 and 2010-2019) from the Swedish coast of the Baltic Sea and Skagerrak to investigate changes in benthic invertebrate trophic interactions. We constructed food webs and calculated fundamental food web metrics evaluating network horizontal and vertical diversity, as well as stability that were compared over space and time. Our results show that the west coast of Sweden (Skagerrak) suffered a reduction in benthic invertebrate biodiversity by 32% between the 1980s and 2010s, and that the number of links, generality of predators, and vulnerability of prey have been significantly reduced. The other basins (Bothnian Sea, Baltic Proper, and Bornholm Basin) do not show any significant changes in species richness or consistent significant trends in any food web metrics investigated, demonstrating resilience at a lower species diversity. The decreased complexity of the Skagerrak food webs indicates vulnerability to further perturbations and pressures should be limited as much as possible to ensure continued ecosystem functions.

2.
Ambio ; 51(7): 1687-1697, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35092571

RESUMO

Ecosystem-based management requires understanding of food webs. Consequently, assessment of food web status is mandatory according to the European Union's Marine Strategy Framework Directive (MSFD) for EU Member States. However, how to best monitor and assess food webs in practise has proven a challenging question. Here, we review and assess the current status of food web indicators and food web models, and discuss whether the models can help addressing current shortcomings of indicator-based food web assessments, using the Baltic Sea as an example region. We show that although the MSFD food web assessment was designed to use food web indicators alone, they are currently poorly fit for the purpose, because they lack interconnectivity of trophic guilds. We then argue that the multiple food web models published for this region have a high potential to provide additional coherence to the definition of good environmental status, the evaluation of uncertainties, and estimates for unsampled indicator values, but we also identify current limitations that stand in the way of more formal implementation of this approach. We close with a discussion of which current models have the best capacity for this purpose in the Baltic Sea, and of the way forward towards the combination of measurable indicators and modelling approaches in food web assessments.


Assuntos
Ecossistema , Cadeia Alimentar , Países Bálticos , Monitoramento Ambiental , Políticas , Incerteza
3.
J Anim Ecol ; 90(5): 1205-1216, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33608888

RESUMO

Studying how food web structure and function vary through time represents an opportunity to better comprehend and anticipate ecosystem changes. Yet, temporal studies of highly resolved food web structure are scarce. With few exceptions, most temporal food web studies are either too simplified, preventing a detailed assessment of structural properties or binary, missing the temporal dynamics of energy fluxes among species. Using long-term, multi-trophic biomass data coupled with highly resolved information on species feeding relationships, we analysed food web dynamics in the Gulf of Riga (Baltic Sea) over more than three decades (1981-2014). We combined unweighted (topology-based) and weighted (biomass- and flux-based) food web approaches, first, to unravel how distinct descriptors can highlight differences (or similarities) in food web dynamics through time, and second, to compare temporal dynamics of food web structure and function. We find that food web descriptors vary substantially and distinctively through time, likely reflecting different underlying ecosystem processes. While node- and link-weighted metrics reflect changes related to alterations in species dominance and fluxes, unweighted metrics are more sensitive to changes in species and link richness. Comparing unweighted, topology-based metrics and flux-based functions further indicates that temporal changes in functions cannot be predicted using unweighted food web structure. Rather, information on species population dynamics and weighted, flux-based networks should be included to better comprehend temporal food web dynamics. By integrating unweighted, node- and link-weighted metrics, we here demonstrate how different approaches can be used to compare food web structure and function, and identify complementary patterns of change in temporal food web dynamics, which enables a more complete understanding of the ecological processes at play in ecosystems undergoing change.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Biomassa , Dinâmica Populacional
4.
J Fish Biol ; 96(3): 669-680, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31950495

RESUMO

The aim of this study was to examine how the presence of a predator and an interspecific competitor influence the habitat use of adult perch (Perca fluviatilis; size: 15.1 ± 0.5 cm) when given the choice between two adjacent habitats. By conducting aquarium experiments, the habitat occupancy of P. fluviatilis was documented in the presence and absence of a predator (pike Esox lucius; size: 25.4 ± 2.1 cm) and a potential competitor (ruffe Gymnocephalus cernuus; size: 14.1 ± 0.3 cm) fish species. Two P. fluviatilis individuals generally shared the same habitat. In the presence of a conspecific, P. fluviatilis favoured the structurally more-complex, artificial macrophyte habitat over the less-structured rock and sand habitat, which in turn were used equally. In the predator- and competitor treatments, P. fluviatilis seemed to adapt their habitat use to the habitat occupancy of E. lucius and G. cernuus in the Macrophyte vs. Rock and, in the predator treatment, also in the Macrophyte vs. Sand habitat combination, by increasingly occupying a habitat that was used less by the predator or competitor species, respectively. This behaviour suggests that P. fluviatilis tried to avoid the other fish species by choosing a, in some cases less preferred, predator- or competitor-free habitat. This study emphasizes the importance of biological interactions illustrated by the potential of predation risk and competition to structure fish communities by influencing habitat use at small spatial scales.


Assuntos
Ecossistema , Percas/fisiologia , Animais , Comportamento Competitivo , Esocidae/fisiologia , Comportamento Predatório
5.
Sci Total Environ ; 643: 1373-1386, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30189554

RESUMO

Estuaries are known to export huge quantities of terrigenous/riverine organic matter and nutrients to coastal areas, subsidizing food sources to their communities; however, this process is seldom investigated in complex multichannel delta-prodelta systems. Stable isotope analysis was used to investigate the contribution of organic sources originated from the Po River Delta, one of the widest deltaic wetlands in the northern Mediterranean Sea, to the diet of the nearby coastal macrobenthic consumers, and their influence on invertebrates' trophic structure and biomass. Following intense river flood events, macrofauna samples were collected in the prodelta area at increasing distance from the main river distributary mouth. Potential primary resources were collected within the delta and the prodelta areas. A terrestrial signal in the primary consumers' diet was evident as a shift in their δ13C, being this more 13C depleted near the main river distributary. The Bayesian mixing models indicated an important contribution of deltaic sources, in particular C4-grass detritus (25-57%), to primary consumers' diet, confirming a strong energetic link between delta and prodelta areas. Overall, most of the consumers' biomass were concentrated at sites close to the main distributary mouth, mainly as suspension and surface deposit feeders. A simplification of the macrobenthic community structure, accompanied by narrower transfer pathways was also evident at sites more distant from the main river distributary, in relation to changes in the quality of resources. Our data, although limited to winter season, suggest that during periods of low in situ productivity but high river flow energy, invertebrates are able to efficiently exploit terrigenous food sources, restraining the detrimental effect of increased turbidity and sedimentation. We conclude that riparian/wetland vegetation associated with river deltas can provide important food sources to marine primary consumers. These results furthermore highlight the need for integrated management and protection strategies of connected land-sea ecosystems.


Assuntos
Organismos Aquáticos/fisiologia , Monitoramento Ambiental , Cadeia Alimentar , Invertebrados/fisiologia , Áreas Alagadas , Animais , Teorema de Bayes , Isótopos de Carbono , Mar Mediterrâneo , Mar do Norte , Rios
6.
Glob Chang Biol ; 23(6): 2179-2196, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28132408

RESUMO

Benthic-pelagic coupling is manifested as the exchange of energy, mass, or nutrients between benthic and pelagic habitats. It plays a prominent role in aquatic ecosystems, and it is crucial to functions from nutrient cycling to energy transfer in food webs. Coastal and estuarine ecosystem structure and function are strongly affected by anthropogenic pressures; however, there are large gaps in our understanding of the responses of inorganic nutrient and organic matter fluxes between benthic habitats and the water column. We illustrate the varied nature of physical and biological benthic-pelagic coupling processes and their potential sensitivity to three anthropogenic pressures - climate change, nutrient loading, and fishing - using the Baltic Sea as a case study and summarize current knowledge on the exchange of inorganic nutrients and organic material between habitats. Traditionally measured benthic-pelagic coupling processes (e.g., nutrient exchange and sedimentation of organic material) are to some extent quantifiable, but the magnitude and variability of biological processes are rarely assessed, preventing quantitative comparisons. Changing oxygen conditions will continue to have widespread effects on the processes that govern inorganic and organic matter exchange among habitats while climate change and nutrient load reductions may have large effects on organic matter sedimentation. Many biological processes (predation, bioturbation) are expected to be sensitive to anthropogenic drivers, but the outcomes for ecosystem function are largely unknown. We emphasize how improved empirical and experimental understanding of benthic-pelagic coupling processes and their variability are necessary to inform models that can quantify the feedbacks among processes and ecosystem responses to a changing world.


Assuntos
Mudança Climática , Ecossistema , Peixes , Animais , Cadeia Alimentar
7.
Biol Rev Camb Philos Soc ; 92(2): 684-697, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-26756137

RESUMO

Understanding the consequences of species loss in complex ecological communities is one of the great challenges in current biodiversity research. For a long time, this topic has been addressed by traditional biodiversity experiments. Most of these approaches treat species as trait-free, taxonomic units characterizing communities only by species number without accounting for species traits. However, extinctions do not occur at random as there is a clear correlation between extinction risk and species traits. In this review, we assume that large species will be most threatened by extinction and use novel allometric and size-spectrum concepts that include body mass as a primary species trait at the levels of populations and individuals, respectively, to re-assess three classic debates on the relationships between biodiversity and (i) food-web structural complexity, (ii) community dynamic stability, and (iii) ecosystem functioning. Contrasting current expectations, size-structured approaches suggest that the loss of large species, that typically exploit most resource species, may lead to future food webs that are less interwoven and more structured by chains of interactions and compartments. The disruption of natural body-mass distributions maintaining food-web stability may trigger avalanches of secondary extinctions and strong trophic cascades with expected knock-on effects on the functionality of the ecosystems. Therefore, we argue that it is crucial to take into account body size as a species trait when analysing the consequences of biodiversity loss for natural ecosystems. Applying size-structured approaches provides an integrative ecological concept that enables a better understanding of each species' unique role across communities and the causes and consequences of biodiversity loss.


Assuntos
Biodiversidade , Extinção Biológica , Ecossistema , Cadeia Alimentar
8.
Proc Biol Sci ; 283(1825): 20152569, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26888032

RESUMO

Species composition and habitats are changing at unprecedented rates in the world's oceans, potentially causing entire food webs to shift to structurally and functionally different regimes. Despite the severity of these regime shifts, elucidating the precise nature of their underlying processes has remained difficult. We address this challenge with a new analytic approach to detect and assess the relative strength of different driving processes in food webs. Our study draws on complexity theory, and integrates the network-centric exponential random graph modelling (ERGM) framework developed within the social sciences with community ecology. In contrast to previous research, this approach makes clear assumptions of direction of causality and accommodates a dynamic perspective on the emergence of food webs. We apply our approach to analysing food webs of the Baltic Sea before and after a previously reported regime shift. Our results show that the dominant food web processes have remained largely the same, although we detect changes in their magnitudes. The results indicate that the reported regime shift may not be a system-wide shift, but instead involve a limited number of species. Our study emphasizes the importance of community-wide analysis on marine regime shifts and introduces a novel approach to examine food webs.


Assuntos
Organismos Aquáticos/fisiologia , Biota , Modelos Biológicos , Cadeia Alimentar , Oceanos e Mares , Dinâmica Populacional
9.
Naturwissenschaften ; 103(1-2): 8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26757930

RESUMO

During a recent marine biological expedition to the Northeast Greenland shelf break (latitudes 74-77 °N), we made the first discovery of Atlantic cod (Gadus morhua), beaked redfish (Sebastes mentella) and capelin (Mallotus villosus). Our novel observations shift the distribution range of Atlantic cod >1000 km further north in East Greenland waters. In light of climate change, we discuss physical forcing and putative connections between the faunas of the Northeast Greenland shelf and the Barents Sea. We emphasise the importance of using real data in spread scenarios for understudied Arctic seas.


Assuntos
Distribuição Animal , Biodiversidade , Peixes/fisiologia , Modelos Biológicos , Animais , Regiões Árticas , Oceano Atlântico , Mudança Climática , Gadus morhua/fisiologia
10.
PLoS One ; 8(10): e78910, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24167635

RESUMO

Due to human impact, there is extensive degradation and loss of marine habitats, which calls for measures that incorporate taxonomic as well as functional and trophic aspects of biodiversity. Since such data is less easily quantifiable in nature, the use of habitats as surrogates or proxies for biodiversity is on the rise in marine conservation and management. However, there is a critical gap in knowledge of whether pre-defined habitat units adequately represent the functional and trophic structure of communities. We also lack comparisons of different measures of community structure in terms of both between- (ß) and within-habitat (α) variability when accounting for species densities. Thus, we evaluated a priori defined coastal habitats as surrogates for traditional taxonomic, functional and trophic zoobenthic community structure. We focused on four habitats (bare sand, canopy-forming algae, seagrass above- and belowground), all easily delineated in nature and defined through classification systems. We analyzed uni- and multivariate data on species and trait diversity as well as stable isotope ratios of benthic macrofauna. A good fit between habitat types and taxonomic and functional structure was found, although habitats were more similar functionally. This was attributed to within-habitat heterogeneity so when habitat divisions matched the taxonomic structure, only bare sand was functionally distinct. The pre-defined habitats did not meet the variability of trophic structure, which also proved to differentiate on a smaller spatial scale. The quantification of trophic structure using species density only identified an epi- and an infaunal unit. To summarize the results we present a conceptual model illustrating the match between pre-defined habitat types and the taxonomic, functional and trophic community structure. Our results show the importance of including functional and trophic aspects more comprehensively in marine management and spatial planning.


Assuntos
Organismos Aquáticos/fisiologia , Biodiversidade , Ecossistema , Cadeia Alimentar , Animais , Organismos Aquáticos/classificação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...