Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(8): 6834-6843, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38328882

RESUMO

Here we present a study on the solid state properties of trans tetra-ortho-bromo azobenzene (4Br-Azo). Two distinct crystal polymorphs were identified: the α-phase and ß-phase. Notably, only the ß-phase exhibited an extraordinary photosalient effect (jumping/breaking) upon exposure to a wide range of visible light. Powder X-ray diffraction and Raman spectroscopy revealed that the ß-phase is metastable and can transition to the α-phase when subjected to specific stimuli like heat and light. Furthermore, single crystal X-ray diffraction and density functional theory calculations highlighted the significance of a highly strained conformer in the ß-phase, showing that the metastability of the phase potentially arises from relieving this strain. This metastability leads to a light induced phase transition, which appears to be the cause of the photosalient effect in these crystals. Interestingly the polymorphism at the core of 4Br-Azo's dynamic behavior is based on different arrangements of halogen based intermolecular interactions. It is possible that continued study on combining visible light capturing chromophores with halogen interaction-based polymorphism will lead to the discovery of even more visible light controlled dynamic crystal materials.

2.
Mater Horiz ; 11(6): 1495-1501, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38226904

RESUMO

The control of droplet motion is a significant challenge, as there has been no simple method for effective manipulation. Utilizing light for the control of droplets offers a promising solution due to its non-contact nature and high degree of controllability. In this study, we present our findings on the translational motion of pre-photomelted droplets composed of azobenzene derivatives on a glass surface when exposed to UV and visible light sources from different directions. These droplets exhibited directional and continuous motion upon light irradiation and this motion was size-dependent. Only droplets with diameters less than 10 µm moved with a maximum velocity of 300 µm min-1. In addition, the direction of the movement was controllable by the direction of the light. The motion is driven by a change in contact angle, where UV or visible light switched the contact angle to approximately 50° or 35°, respectively. In addition, these droplets were also found to be capable carriers for fluorescent quantum dots. As such, droplets composed of photoresponsive molecules offer unique opportunities for designing novel light-driven open-surface microfluidic systems.

3.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139291

RESUMO

The photoinduced crawling motion of crystals is a continuous motion that azobenzene molecular crystals exhibit under light irradiation. Such motion enables object manipulation at the microscale with a simple setup of fixed LED light sources. Transportation of nano-/micromaterials using photoinduced crawling motion has recently been reported. However, the details of the motion mechanism have not been revealed so far. Herein, we report visualization of the dynamics of fine particles in 4-(methylamino)azobenzene (4-MAAB) crystals under light irradiation via diffracted X-ray tracking (DXT). Continuously repeated melting and recrystallization of 4-MAAB crystals under light irradiation results in the flow of liquid 4-MAAB. Zinc oxide (ZnO) particles were introduced inside the 4-MAAB crystals to detect diffracted X-rays. The ZnO particles rotate with the flow of liquid 4-MAAB. By using white X-rays with a wide energy width, the rotation of each zinc oxide nanoparticle was detected as the movement of a bright spot in the X-ray diffraction pattern. It was clearly shown that the ZnO particles rotated increasingly as the irradiation light intensity increased. Furthermore, we also found anisotropy in the rotational direction of ZnO particles that occurred during the crawling motion of 4-MAAB crystals. It has become clear that the flow perpendicular to the supporting film of 4-MAAB crystals is enhanced inside the crystal during the crawling motion. DXT provides a unique means to elucidate the mechanism of photoinduced crawling motion of crystals.


Assuntos
Óxido de Zinco , Raios X , Compostos Azo/química , Rotação
4.
Beilstein J Nanotechnol ; 14: 872-892, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37674543

RESUMO

Nanoarchitectonics has attracted increasing attention owing to its potential applications in nanomachines, nanoelectronics, catalysis, and nanopatterning, which can contribute to overcoming global problems related to energy and environment, among others. However, the fabrication of ordered nanoarchitectures remains a challenge, even in two dimensions. Therefore, a deeper understanding of the self-assembly processes and substantial factors for building ordered structures is critical for tailoring flexible and desirable nanoarchitectures. Scanning tunneling microscopy is a powerful tool for revealing the molecular conformations, arrangements, and orientations of two-dimensional (2D) networks on surfaces. The fabrication of 2D assemblies involves non-covalent interactions that play a significant role in the molecular arrangement and orientation. Among the non-covalent interactions, dispersion interactions that derive from alkyl chain units are believed to be weak. However, alkyl chains play an important role in the adsorption onto substrates, as well as in the in-plane intermolecular interactions. In this review, we focus on the role of alkyl chains in the formation of ordered 2D assemblies at the solid/liquid interface. The alkyl chain effects on the 2D assemblies are introduced together with examples documented in the past decades.

5.
Phys Chem Chem Phys ; 25(15): 10917-10924, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37014652

RESUMO

Well-ordered molecular arrangement on surfaces is fundamental for fabrication of functional molecular devices which are of particular interest in nanotechnology. In addition to nano-manufacturing, the production of useful materials from natural resources has recently attracted increasing attention. Herein, we focused on the two-dimensional (2D) self-assemblies of curcumin derivatives. The effects of the number, length, and substitution of the alkyl chains on the 2D structures of curcumin derivatives were studied by scanning tunnelling microscopy at the highly oriented pyrolytic graphite/1,2,4-trichlorobenzene interface. Curcumin derivatives containing both methoxy and alkoxy chain groups and those possessing four alkoxy chains exhibit linear structures with and without interdigitation of alkoxy chains, respectively. These 2D structure formations are independent of the alkyl chain length. However, the bisdemethoxycurcumin derivatives periodically form stair-like and linear structures depending on the alkyl chain length, which indicates the existence of the odd-even effect. These results suggest that the 2D structural modulation of curcumin derivatives caused by the odd-even effect can be tuned by the number of alkyl chain substituents. The appearance and disappearance of the odd-even effect in curcumin derivatives are discussed in terms of the balance between intermolecular and molecule-substrate interactions.

6.
Phys Chem Chem Phys ; 24(48): 29757-29764, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36458744

RESUMO

Elucidating the correlation between the molecular arrangement and physical properties of organic compounds is critical to facilitating the development of advanced functional materials. X-ray structural analyses are generally performed to clarify this relationship. Several attempts have been made to ascertain the links between three-dimensional (3D) crystals and their two-dimensional (2D) structures, which can be revealed by scanning tunnelling microscopy (STM) at the molecular level. Thus, 2D self-assemblies of a series of azobenzene derivatives were investigated in this study, and the effects of methyl substitution of the azobenzene core and alkyl chain length on the 2D molecular arrangements at the solid/liquid interface were revealed. Three types of azobenzene derivatives were prepared; these contained azobenzene (Az), 3-methyl azobenzene (MAz), or 3,3'-dimethyl azobenzene (DAz) as cores and alkyloxy chains of different lengths (C8-13) at their 4,4' positions. The 2D structures of the Az and DAz compounds were found to be modulated owing to the odd-even effect of the alkyl chains in a specific chain-length range; this effect was only weakly exhibited by the MAz compounds. This result suggests that only the methyl-group substitution of the azobenzene core significantly affected the 2D structures. The 2D structural features have been discussed in terms of molecular conformation, as well as their correlation with the photo-melting behaviour of the azobenzene derivatives, particularly the MAz compounds.

7.
ACS Nano ; 16(10): 16353-16362, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36222696

RESUMO

The intelligent transport of materials at interfaces is essential for a wide range of processes, including chemical microreactions, bioanalysis, and microfabrication. Both passive and active methods have been used to transport droplets, among which light-based techniques have attracted much attention because they are noncontact, safe, reversible, and controllable. However, conventional light-driven systems also involve challenges related to low transport ability and instability. Because of these shortcomings, technologies that can transport and manipulate droplets and microsolids on the same surface have yet to be realized. The present work demonstrates a light-driven system referred to as a liquid conveyor that enables the transport of both water droplets and microsolids. After the incorporation of an azobenzene-based molecular motor capable of undergoing photoisomerization into the surface liquid layer of this system, an isomerization gradient was induced by exposure to ultraviolet light emitting diodes that induced flow in this layer. Various parameters were optimized, including the concentration of the molecular motor compound, the light intensity, the viscosity of the liquid layer, and the droplet volume. This process eventually achieved the horizontal transport of droplets in any direction at varied rates. As a consequence of the limited heat buildup, the lack of droplet deformation, and extremely small contact angle hysteresis in this system, microsolids on droplets were also transported. This liquid conveyor is a promising platform for high-throughput omni-liquid/solid manipulation in the fields of biotechnology, chemistry, and mechanical engineering.

8.
Science ; 377(6606): 673-678, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35926016

RESUMO

Skeletal or concave polyhedral crystals appear in a variety of synthetic processes and natural environments. However, their morphology, size, and orientation are difficult to control because of their highly kinetic growth character. We report a methodology to achieve synchronous, uniaxial, and stepwise growth of micrometer-scale skeletal single crystals from planar-chiral double-decker molecules. Upon drop-casting of a heated ethanol solution onto a quartz substrate, the molecules spontaneously assemble into standing vessel-shaped single crystals uniaxially and synchronously over the wide area of the substrate, with small size polydispersity. The crystal edge is active even after consumption of the molecules and resumes stereoselective growth with successive feeding. The resultant morphology can be packed into polycyclic aromatic hydrocarbon-like microarchitectures and behaves as a microscopic container.

9.
Chem Commun (Camb) ; 58(11): 1752-1755, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35029616

RESUMO

The two-dimensional self-assembly of rufigallol derivatives and their metal coordination were studied by scanning tunnelling microscopy. Ex situ Cu(II)-coordinated rufigallol derivatives exhibited columnar structures with some defects, whereas regular and linear structures were formed upon in situ metal coordination at solid/liquid interfaces.

10.
Langmuir ; 37(51): 14878-14888, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34894693

RESUMO

The increase in energy loss due to friction and the use of large amounts of lubricants to improve it are major challenges we face from a global environmental perspective. Pitcher-plant-inspired liquid-infused surfaces (LISs) are emerging super-repellent surfaces against liquids. However, their coefficient of friction (CoF) against solids is higher than that of conventional lubricant surfaces. Herein, we demonstrate superlubricity with a single water droplet placed on a LIS holding oleic acid, a component of plant oil. When a water droplet is placed on the fluid layer, the CoF under reciprocating and rotating friction is 0.012 and 0.0098, respectively. A force in the direction opposite to the loading due to the Laplace pressure on the droplet and an autonomous positional movement of the water accompanied by the optimization of surface energy maintain the fluid-lubrication state and prevent direct contact between the surface and the friction material, resulting in a decrease of the dependence of the CoF on the friction velocity. The key technology here will not only present a novel strategy for preparing LISs against solids but also serve as a step toward a sustainable green strategy for friction reduction and lubrication, which would greatly reduce energy loss and environmental degradation.


Assuntos
Óleos de Plantas , Água , Fricção , Lubrificação , Propriedades de Superfície
11.
Langmuir ; 37(48): 14177-14185, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34808058

RESUMO

Photo-induced crawling motion of a crystal of 3,3'-dimethylazobenzene (DMAB) on gold surfaces having different surface properties and various patterns was studied. DMAB crystals crawl continuously when exposed to UV and visible lights simultaneously from different directions. On a gold surface functionalized by a thiol having a hydroxyl group at the terminal (16-hydroxy-1-hexadecanethiol (HOC16SH)), the crystals crawled with a relatively high velocity (ca. 4 µm min-1), and they changed the crystal shape while keeping a distinct crystal face. On a gold surface functionalized by a thiol having an alkyl chain terminal (1-hexadecanethiol (C16SH)), the crawling was observed with a slower velocity (ca. 1.5 µm min-1). However, the shape of the crystals became a droplet-like shape soon after the irradiation started, and the shape persisted during the motion. Light intensity dependence of the crawling velocity of the droplet-like crystal on this surface showed that UV light has stronger dependence for the motion than the visible light. On a substrate with a stripe pattern of alternating C16SH-modified gold and hexadecyltrimethylsilane (HDTMS)-modified glass, crystals crawled only on the surface of the C16SH-modified gold, which may be due to the wettability hysteresis at the surface. On a substrate with a stripe pattern of HOC16SH-modified gold and HDTMS-modified glass, crystals were attracted to the gold side. On a gold substrate with a periodic pattern of different height (ca. 50 nm) but having a uniform treatment with C16SH, crystals crawled up and down the steps without significant disturbance at the boundary of the step. Therefore, wettability of the surface has a greater impact on controlling the motion of the crystal than the surface structure. The present results not only unveil the crawling behavior on various surfaces but also offer a guide to controlling the motion toward applications for novel carriage vehicles to transport molecules/objects on a surface.

12.
Front Chem ; 9: 684767, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422758

RESUMO

Photo-induced crawling motion of a crystal of 3,3'-dimethylazobenzene (DMAB) on a glass substrate having different surface properties was studied. When exposed to UV and visible lights simultaneously from different directions, crystals crawl continuously on a glass surface. On a hydrophilic surface, the crystals crawled faster than those on other surfaces but crystals showed spreading while they moved. On hydrophobic surfaces, on the other hand, the crystals showed little shape change and slower crawling motion. The contact angles of the liquid phase of DMAB on surface-modified glass substrates showed positive correlation with the water contact angles. The interaction of melted azobenzene with glass surfaces plays an important role for the crawling motion. We proposed models to explain the asymmetric condition that leads to the directional motion. Specifically by considering the penetration length of UV and visible light sources, it was successfully shown that the depth of light penetration is different at the position of a crystal. This creates a nonequilibrium condition where melting and crystallization are predominant in the same crystal.

13.
ACS Appl Mater Interfaces ; 13(30): 36341-36349, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34283561

RESUMO

Polymeric coatings with oxygen barrier properties are an important technology in food packaging that can extend the shelf life of food products and reduce waste. Although a typical technology in practical use is the deposition of metal or inorganic materials between multilayer films to reduce the oxygen transmission rate, once the film is damaged, oxygen permeates through the damaged area, damaging the packaged food. In addition, nanobrick wall structures consisting of nanoplatelet bricks have the potential to replace barrier films made of inorganic materials; however, they similarly lack repair performance or have slow repair speed despite having repair performance. Inspired by the rapid self-repair mechanism of cephalopods, the study develops a nanoclay-containing coating that can rapidly repair surface damage via water within 10 s. By introducing CaCl2-derived counterions and montmorillonite for nanobrick wall structures into polyelectrolyte multilayers stacked by layer-by-layer self-assembly, the noncovalent polymer network is increased, resulting in mimicking a strong cephalopod-derived ß-sheet structure and noncovalent intermolecular interactions derived from cephalopods. The high water retention at the surface showed super-bubble-phobicity in water and inhibited gas permeation. The oxygen permeability of the coatings with more than a certain amount of montmorillonite was less than 1/100 of that of bare polyethylene. The ultrafast self-healing gas barrier coating has the potential to be used not only for food products but also for electronics and pharmaceutical packaging and gas separation applications. The key technology developed in this study provides novel insights into the construction of self-healing membranes made of composite materials and will contribute to the formation of a sustainable society.

14.
Nanoscale Adv ; 3(11): 3272-3278, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36133653

RESUMO

Cyclodextrin (CD)-capped gold nanoparticles (AuNPs) can be applied in sensing, catalysis, and self-assembly processes due to their molecular recognition ability. As the plasmon resonance of AuNPs depends on their size, the size-controlled synthesis of CD-capped AuNPs is essential for the development of these applications. Herein, we successfully synthesized ß-CD-capped AuNPs with diameters of 24-85 nm using a seed-mediated growth method. The AuNPs were prepared using a ß-CD as both the reducing agent and the capping agent. Harsh reagents such as NaBH4 and NaOH were not used. The size-controlled synthesis of ß-CD-capped AuNPs was achieved by changing the amount of seed solution. We fabricated monolayers of ß-CD-capped AuNPs by liquid-liquid interfacial self-assembly for application in surface-enhanced Raman scattering (SERS). The SERS intensity is significantly improved by using larger ß-CD-capped AuNPs. In addition, we found that ß-CDs can detect pyrene with higher sensitivity than α-CDs on the basis of the difference in molecular recognition ability between α-CDs and ß-CDs.

15.
RSC Adv ; 11(36): 22376-22380, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35480796

RESUMO

We demonstrated that the vertically aligned gold nanorods (AuNRs) were quickly and easily formed by using inkjet printing when aqueous dispersion of AuNRs containing a small amount of ethylene glycol (EG) was employed as an ink. It was observed that the content of EG in water suppressed rapid drying and convection in the droplets, which is favorable for the formation of the nanostructures.

16.
ACS Appl Mater Interfaces ; 12(28): 31992-31997, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32609481

RESUMO

In liquid crystal elastomers (LCEs), the internal mechanical loss increases around the nematic-isotropic phase transition and remains high all through the nematic phase, originating from the internal orientational relaxation related to the so-called "soft elasticity". Because the viscoelastic dissipation of the materials affects their adhesion properties, the nematic-isotropic phase transition can cause dramatic changes in the adhesion strength. Although the phase transitions can generally be induced by heat, here, we demonstrate the light-driven transition in dynamic adhesion in dye-doped nematic LCE. The special dye is chosen to efficiently generate local heat on light absorption. The adhesion strength is lowered with fine tunability depending on the light power, which governs the effective local temperature and through that the viscoelastic damping of the system. We demonstrate the light-assisted dynamic control of adhesion in a 90°-peel test and in pick-and-release of objects, which may lead to the development of stimuli-responsive adhesive systems with fine spatio-temporal controls.

17.
Org Biomol Chem ; 18(13): 2538, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32186572

RESUMO

Correction for 'Base-catalyzed C-alkylation of potassium enolates with styrenes via a metal-ene reaction: a mechanistic study' by Joshua P. Barham et al., Org. Biomol. Chem., 2020, DOI: 10.1039/c9ob02495f.

18.
Org Biomol Chem ; 18(11): 2063-2075, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32100777

RESUMO

Base-catalyzed, C-alkylation of potassium (K) enolates with styrenes (CAKES) has recently emerged as a highly practical and convenient method for elaboration or synthesis of pharmaceutically-relevant cores. K enolate-type precursors such as alkyl-substituted heterocycles (pyridines, pyrazines and thiophenes), ketones, imines, nitriles and amides undergo C-alkylation reactions with styrene in the presence of KOtBu or KHMDS. Surprisingly, no studies have probed the reaction mechanism beyond the likely initial formation of a K enolate. Herein, a synergistic approach of computational (DFT), kinetic and deuterium labelling studies rationalizes various experimental observations and supports a metal-ene-type reaction for amide CAKES. Moreover, our approach explains experimental observations in other reported C-alkylation reactions of other enolate-type precursors, thus implicating a general mechanism for CAKES.

19.
Nat Commun ; 11(1): 568, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996689

RESUMO

Nature has always demonstrated incredible ability to create amazing materials such as soft clay which are built from nanoplatelet packing structures. It is challenging to produce artificial clays owing to the difficulty in obtaining large volume fractions of nanoplatelets and the lack of structural control in layer-by-layer packing. Here, single-crystalline Au nanosheets are synthesized by controlled growth in the bilayer membranes of succinic acid surfactants. Then, a self-assembly strategy is used to make {111}-oriented gold nanostructures at the liquid-liquid interface. The stiffness of the nanosheet assemblies are six orders of magnitude softer than bulk gold. The Au nanosheet aggregates show high plasticity and deformable into macroscale free-standing metallic architectures. They show a stress/strain-dependent conductivity owing to morphological changes. Our study provides valuable insights on the chemical synthesis of 2D nanostructures as well as for the self-assembly strategy on fabrication of mouldable metals for producing free-standing metallic architectures with microscale resolutions.

20.
Chem Commun (Camb) ; 55(63): 9303-9306, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31309947

RESUMO

Phototaxis of azobenzene crystals is demonstrated for the first time by using a simple setup. The crystals on a glass move away from the light source like living organisms during visible light irradiation. The motion is driven by repeated melting and recrystallization associated with trans↔cis isomerization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...