Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(8): e1010903, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37639469

RESUMO

Polo-like kinase 1 (PLK1) is a serine/threonine kinase required for mitosis and cytokinesis. As cancer cells are often hypersensitive to partial PLK1 inactivation, chemical inhibitors of PLK1 have been developed and tested in clinical trials. However, these small molecule inhibitors alone are not completely effective. PLK1 promotes numerous molecular and cellular events in the cell division cycle and it is unclear which of these events most crucially depend on PLK1 activity. We used a CRISPR-based genome-wide screening strategy to identify genes whose inactivation enhances cell proliferation defects upon partial chemical inhibition of PLK1. Genes identified encode proteins that are functionally linked to PLK1 in multiple ways, most notably factors that promote centromere and kinetochore function. Loss of the kinesin KIF18A or the outer kinetochore protein SKA1 in PLK1-compromised cells resulted in mitotic defects, activation of the spindle assembly checkpoint and nuclear reassembly defects. We also show that PLK1-dependent CENP-A loading at centromeres is extremely sensitive to partial PLK1 inhibition. Our results suggest that partial inhibition of PLK1 compromises the integrity and function of the centromere/kinetochore complex, rendering cells hypersensitive to different kinetochore perturbations. We propose that KIF18A is a promising target for combinatorial therapies with PLK1 inhibitors.


Assuntos
Proteínas de Ciclo Celular , Elementos Facilitadores Genéticos , Cinetocoros , Proteínas Serina-Treonina Quinases , Proteínas de Ciclo Celular/genética , Proteínas Serina-Treonina Quinases/genética , Humanos , Quinase 1 Polo-Like
2.
J Cell Biol ; 220(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33836042

RESUMO

Mitotic entry involves inhibition of protein phosphatase 2A bound to its B55/Tws regulatory subunit (PP2A-B55/Tws), which dephosphorylates substrates of mitotic kinases. This inhibition is induced when Greatwall phosphorylates Endos, turning it into an inhibitor of PP2A-Tws. How this mechanism operates spatiotemporally in the cell is incompletely understood. We previously reported that the nuclear export of Greatwall in prophase promotes mitotic progression. Here, we examine the importance of the localized activities of PP2A-Tws and Endos for mitotic regulation. We find that Tws shuttles through the nucleus via a conserved nuclear localization signal (NLS), but expression of Tws in the cytoplasm and not in the nucleus rescues the development of tws mutants. Moreover, we show that Endos must be in the cytoplasm before nuclear envelope breakdown (NEBD) to be efficiently phosphorylated by Greatwall and to bind and inhibit PP2A-Tws. Disrupting the cytoplasmic function of Endos before NEBD results in subsequent mitotic defects. Evidence suggests that this spatiotemporal regulation is conserved in humans.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mitose , Peptídeos/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Análise Espaço-Temporal , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Masculino , Peptídeos/genética , Fosforilação , Proteína Fosfatase 2/genética , Proteínas Serina-Treonina Quinases/genética
3.
Nat Commun ; 8(1): 1701, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167465

RESUMO

The Polo kinase is a master regulator of mitosis and cytokinesis conserved from yeasts to humans. Polo is composed of an N-term kinase domain (KD) and a C-term polo-box domain (PBD), which regulates its subcellular localizations. The PBD and KD can interact and inhibit each other, and this reciprocal inhibition is relieved when Polo is phosphorylated at its activation loop. How Polo activation and localization are coupled during mitotic entry is unknown. Here we report that PBD binding to the KD masks a nuclear localization signal (NLS). Activating phosphorylation of the KD leads to exposure of the NLS and entry of Polo into the nucleus before nuclear envelope breakdown. Failures of this mechanism result in misregulation of the Cdk1-activating Cdc25 phosphatase and lead to mitotic and developmental defects in Drosophila. These results uncover spatiotemporal mechanisms linking master regulatory enzymes during mitotic entry.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Ativação Enzimática , Feminino , Masculino , Mitose/genética , Mitose/fisiologia , Modelos Biológicos , Modelos Moleculares , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fosfatases cdc25/metabolismo
4.
Cell Cycle ; 16(12): 1220-1224, 2017 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-28521657

RESUMO

For almost a decade, there has been much interest in the development of chemical inhibitors of Polo-like kinase 1 (Plk1) protein interactions. Plk1 is a master regulator of the cell division cycle that controls numerous substrates. It is a promising target for cancer drug development. Inhibitors of the kinase domain of Plk1 had some success in clinical trials. However, they are not perfectly selective. In principle, Plk1 can also be inhibited by interfering with its protein interaction domain, the Polo-Box Domain (PBD). Selective chemical inhibitors of the PBD would constitute tools to probe for PBD-dependent functions of Plk1 and could be advantageous in cancer therapy. The discovery of Poloxin and thymoquinone as PBD inhibitors indicated that small, cell-permeable chemical inhibitors could be identified. Other efforts followed, including ours, reporting additional molecules capable of blocking the PBD. It is now clear that, unfortunately, most of these compounds are non-specific protein alkylators (defined here as groups covalently added via a carbon) that have little or no potential for the development of real Plk1 PBD-specific drugs. This situation should be minded by biologists potentially interested in using these compounds to study Plk1. Further efforts are needed to develop selective, cell-permeable PBD inhibitors.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Alquilação , Benzoatos/farmacologia , Benzoquinonas/farmacologia , Proteínas de Ciclo Celular/fisiologia , Glicina/análogos & derivados , Glicina/farmacologia , Humanos , Mitose , Neoplasias/tratamento farmacológico , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Quinonas/farmacologia , Sulfonas/farmacologia , Quinase 1 Polo-Like
5.
Sci Rep ; 5: 37581, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27874094

RESUMO

Polo-like kinase 1 (Plk1) plays several roles in cell division and it is a recognized cancer drug target. Plk1 levels are elevated in cancer and several types of cancer cells are hypersensitive to Plk1 inhibition. Small molecule inhibitors of the kinase domain (KD) of Plk1 have been developed. Their selectivity is limited, which likely contributes to their toxicity. Polo-like kinases are characterized by a Polo-Box Domain (PBD), which mediates interactions with phosphorylation substrates or regulators. Inhibition of the PBD could allow better selectivity or result in different effects than inhibition of the KD. In vitro screens have been used to identify PBD inhibitors with mixed results. We developed the first cell-based assay to screen for PBD inhibitors, using Bioluminescence Resonance Energy Transfer (BRET). We screened through 112 983 compounds and characterized hits in secondary biochemical and biological assays. Subsequent Structure-Activity Relationship (SAR) analysis on our most promising hit revealed that it requires an alkylating function for its activity. In addition, we show that the previously reported PBD inhibitors thymoquinone and Poloxin are also alkylating agents. Our cell-based assay is a promising tool for the identification of new PBD inhibitors with more drug-like profiles using larger and more diverse chemical libraries.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Alquilantes/química , Alquilantes/farmacologia , Benzoatos/química , Benzoatos/farmacologia , Benzoquinonas/química , Benzoquinonas/farmacologia , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Domínios e Motivos de Interação entre Proteínas , Inibidores de Proteínas Quinases/química , Quinonas/química , Quinonas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Quinase 1 Polo-Like
6.
Cell Cycle ; 15(4): 528-39, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26761639

RESUMO

Entry into mitosis requires the phosphorylation of multiple substrates by cyclin B-Cdk1, while exit from mitosis requires their dephosphorylation, which depends largely on the phosphatase PP2A in complex with its B55 regulatory subunit (Tws in Drosophila). At mitotic entry, cyclin B-Cdk1 activates the Greatwall kinase, which phosphorylates Endosulfine proteins, thereby activating their ability to inhibit PP2A-B55 competitively. The inhibition of PP2A-B55 at mitotic entry facilitates the accumulation of phosphorylated Cdk1 substrates. The coordination of these enzymes involves major changes in their localization. In interphase, Gwl is nuclear while PP2A-B55 is cytoplasmic. We recently showed that Gwl suddenly relocalizes from the nucleus to the cytoplasm in prophase, before nuclear envelope breakdown and that this controlled localization of Gwl is required for its function. We and others have shown that phosphorylation of Gwl by cyclin B-Cdk1 at multiple sites is required for its nuclear exclusion, but the precise mechanisms remained unclear. In addition, how Gwl returns to its nuclear localization was not explored. Here we show that cyclin B-Cdk1 directly inactivates a Nuclear Localization Signal in the central region of Gwl. This phosphorylation facilitates the cytoplasmic retention of Gwl, which is exported to the cytoplasm in a Crm1-dependent manner. In addition, we show that PP2A-Tws promotes the return of Gwl to its nuclear localization during cytokinesis. Our results indicate that the cyclic changes in Gwl localization at mitotic entry and exit are directly regulated by the antagonistic cyclin B-Cdk1 and PP2A-Tws enzymes.


Assuntos
Proteína Quinase CDC2/genética , Ciclina B/genética , Proteínas de Drosophila/genética , Mitose/genética , Fosfoproteínas Fosfatases/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Proteína Quinase CDC2/metabolismo , Núcleo Celular/genética , Ciclina B/metabolismo , Citoplasma/genética , Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Carioferinas/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Proteína Exportina 1
7.
J Cell Biol ; 207(2): 201-11, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25332165

RESUMO

Drosophila melanogaster Polo and its human orthologue Polo-like kinase 1 fulfill essential roles during cell division. Members of the Polo-like kinase (Plk) family contain an N-terminal kinase domain (KD) and a C-terminal Polo-Box domain (PBD), which mediates protein interactions. How Plks are regulated in cytokinesis is poorly understood. Here we show that phosphorylation of Polo by Aurora B is required for cytokinesis. This phosphorylation in the activation loop of the KD promotes the dissociation of Polo from the PBD-bound microtubule-associated protein Map205, which acts as an allosteric inhibitor of Polo kinase activity. This mechanism allows the release of active Polo from microtubules of the central spindle and its recruitment to the site of cytokinesis. Failure in Polo phosphorylation results in both early and late cytokinesis defects. Importantly, the antagonistic regulation of Polo by Aurora B and Map205 in cytokinesis reveals that interdomain allosteric mechanisms can play important roles in controlling the cellular functions of Plks.


Assuntos
Aurora Quinase B/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/citologia , Proteínas Associadas aos Microtúbulos/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Aurora Quinase B/metabolismo , Células Cultivadas , Citocinese , Proteínas de Drosophila/análise , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Modelos Moleculares , Fosforilação , Proteínas Serina-Treonina Quinases/análise , Proteínas Serina-Treonina Quinases/fisiologia
8.
J Cell Biol ; 202(2): 277-93, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23857770

RESUMO

Cell division requires the coordination of critical protein kinases and phosphatases. Greatwall (Gwl) kinase activity inactivates PP2A-B55 at mitotic entry to promote the phosphorylation of cyclin B-Cdk1 substrates, but how Gwl is regulated is poorly understood. We found that the subcellular localization of Gwl changed dramatically during the cell cycle in Drosophila. Gwl translocated from the nucleus to the cytoplasm in prophase. We identified two critical nuclear localization signals in the central, poorly characterized region of Gwl, which are required for its function. The Polo kinase associated with and phosphorylated Gwl in this region, promoting its binding to 14-3-3ε and its localization to the cytoplasm in prophase. Our results suggest that cyclin B-Cdk1 phosphorylation of Gwl is also required for its nuclear exclusion by a distinct mechanism. We show that the nucleo-cytoplasmic regulation of Gwl is essential for its functions in vivo and propose that the spatial regulation of Gwl at mitotic entry contributes to the mitotic switch.


Assuntos
Ciclo Celular , Núcleo Celular/enzimologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/enzimologia , Mitose , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Células Cultivadas , Cromossomos de Insetos/genética , Cromossomos de Insetos/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Feminino , Masculino , Fosforilação , Mapeamento de Interação de Proteínas , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Fuso Acromático/genética , Fuso Acromático/metabolismo , Imagem com Lapso de Tempo
9.
Clin Exp Metastasis ; 27(1): 55-69, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20049513

RESUMO

Epithelial ovarian cancer is the most lethal gynecologic cancer with a 5 years survival rate of 30-40% in patients diagnosed with high-grade invasive disease (TOV). This is in stark contrast to the 95% 5 years survival rate in ovarian cancer patients diagnosed with low malignant potential (LMP) disease. The progression from localized tumor to invasive metastasis involves matrix proteolysis. Protease inhibitors are thought to play a key role by limiting this process. Using the Affymetrix HG-U133A GeneChip array, we have studied all serine protease inhibitors and found several serpin family members that are differentially expressed between LMP and TOV serous tumors. SERPINA1 was selected for further study due to its high expression in the majority of LMP tumors and its low expression in TOV tumors; observations that were also validated by quantitative-PCR (Q-PCR). To study the effects of its over expression on different tumorigenic parameters, SERPINA1 was cloned in the pcDNA3.1+ plasmid which was subsequently used to derive stable clones from two invasive ovarian cancer cell lines, TOV-112D and TOV-1946. We found no effect of SERPINA1 over expression on tumor growth in SCID mice although cell migration and invasion were affected in in vitro assays. There was also no association between patient survival and SERPINA1 immunostaining, however, SERPINA1 localization was different in LMP (nuclear) and TOV (cytoplasmic) tumors. SERPINA1 remains an interesting candidate since protein homeostasis, regulated by proteases and their inhibitors, should be studied holistically in order to assess their full impact in tumor progression.


Assuntos
Neoplasias Ovarianas/metabolismo , alfa 1-Antitripsina/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos SCID , Análise Serial de Tecidos
10.
BMC Cancer ; 8: 346, 2008 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-19032793

RESUMO

BACKGROUND: Serous epithelial ovarian tumors can be subdivided into benign (BOV), low malignant potential (LMP) or borderline and invasive (TOV) tumors. Although the molecular characteristics of serous BOV, LMP and low grade (LG) TOV tumors has been initiated, definitive immunohistochemical markers to distinguish between these tumor types have not been defined. METHODS: In the present study, we used a tissue array composed of 27 BOVs, 78 LMPs and 23 LG TOVs to evaluate the protein expression of a subset of selected candidates identified in our previous studies (Ape1, Set, Ran, Ccne1 and Trail) or known to be implicated in epithelial ovarian cancer disease (p21, Ccnb1, Ckd1). RESULTS: Statistically significant difference in protein expression was observed for Ccnb1 when BOV tumors were compared to LMP tumors (p = 0.003). When BOV were compared to LG TOV tumors, Trail was significantly expressed at a higher level in malignant tumors (p = 0.01). Expression of p21 was significantly lower in LG tumors when compared with either BOVs (p = 0.03) or LMPs (p = 0.001). We also observed that expression of p21 was higher in LMP tumors with no (p = 0.02) or non-invasive (p = 0.01) implants compared to the LMP associated with invasive implants. CONCLUSION: This study represents an extensive analyse of the benign and highly differentiated ovarian disease from an immunohistochemical perspective.


Assuntos
Biomarcadores Tumorais/análise , Cistadenoma Seroso/metabolismo , Cistadenoma Seroso/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Feminino , Humanos , Imuno-Histoquímica , Análise Serial de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...