Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 6: 167, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26345992

RESUMO

INTRODUCTION: Bone marrow-derived mesenchymal stromal cells (MSCs) have been intensely studied for the purpose of developing solutions for clinical tissue engineering. Autologous MSCs can potentially be used to replace tissue defects, but the procedure also carries risks such as immunization and xenogeneic infection. Replacement of the commonly used fetal calf serum (FCS) with human platelet lysate and plasma (PLP) to support cell growth may reduce some of these risks. Altered media could, however, influence stem cell differentiation and we address this experimentally. METHODS: We examined human MSC differentiation into the osteoblast lineage using in vitro two- and three-dimensional cultures with PLP or FCS as cell culture medium supplements. Differentiation was followed by quantitative polymerase chain reaction, and alkaline phosphatase activity, matrix formation and matrix calcium content were quantified. RESULTS: Three-dimensional culture, where human MSCs were grown on collagen sponges, markedly stimulated osteoblast differentiation; a fourfold increase in calcium deposition could be observed in both PLP and FCS groups. PLP-grown cells showed robust osteogenic differentiation both in two- and three-dimensional MSC cultures. The calcium content of the matrix in the two-dimensional PLP group at day 14 was 2.2-fold higher in comparison to the FCS group (p < 0.0001), and at day 21 it was still 1.3-fold higher (p < 0.001), suggesting earlier calcium accumulation to the matrix in the PLP group. This was supported by stronger Alizarin Red staining in the PLP group at day 14. In two-dimesional PLP cultures, cellular proliferation appeared to decrease during later stages of differentiation, while in the FCS group the number of cells increased throughout the experiment. In three-dimensional experiments, the PLP and FCS groups behaved more congruently, except for the alkaline phosphatase activity and mRNA levels which were markedly increased by PLP. CONCLUSIONS: Human PLP was at least equal to FCS in supporting osteogenic differentiation of human MSCs in two- and three-dimensional conditions; however, proliferation was inferior. As PLP is free of animal components, and thus represents reduced risk for xenogeneic infection, its use for human MSC-induced bone repair in the clinic by the three-dimensional live implants presented here appears a promising therapy option.


Assuntos
Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteogênese , Adulto , Células Cultivadas , Humanos , Cultura Primária de Células/métodos , Soro
2.
J Histochem Cytochem ; 61(10): 719-30, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23900596

RESUMO

The aim was to study laminin (LM) synthesis, integration, and deposition into the basement membrane (BM) during adipogenesis. Human bone marrow-derived mesenchymal stromal cells (MSCs) were induced along the adipogenic lineage. LM chain mRNA and protein levels were followed using quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence (IF) staining, transmission electron microscopy (TEM), and immunoprecipitation. MSCs produced low levels of LM mRNAs but were not surrounded by BM in IF and TEM imaging. LM-α4, LM-ß1, and LM-γ1 mRNAs increased during adipogenesis 3.9-, 5.8-, and 2.8-fold by day 28. LM-411 was immunoprecipitated from the ECM of the differentiated cells. Immunostaining suggested deposition of LM-411 and some LM-421. BM build-up was probably organized in part by integrin (Int) α6ß1. At day 28, TEM images revealed BM-like structures around fat droplet-containing cells. The first signs of BM formation and Int α6ß1 were seen using IF imaging at day 14. Laminin-411 and Int α6ß1 were expressed in vivo in mature human subcutaneous fat tissue. Undifferentiated human MSCs did not organize LM subunits into BM, whereas LM-411 and some LM-421 are precipitated in the BM around adipocytes. This is the first demonstration of LM-411 precipitation during hMSC adipogenesis around adipocytes as a structural scaffold and Int-regulated signaling element.


Assuntos
Adipócitos/citologia , Adipogenia , Membrana Basal/metabolismo , Laminina/biossíntese , Laminina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Adipócitos/metabolismo , Adulto , Compostos Azo/metabolismo , Regulação da Expressão Gênica , Humanos , Laminina/genética , Células-Tronco Mesenquimais/citologia , Transporte Proteico
3.
Wound Repair Regen ; 17(4): 569-77, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19614922

RESUMO

We previously showed cell-cell contacts of human dermal fibroblasts to induce expression of the hepatocyte growth factor/scatter factor (HGF) in a process designated as nemosis. Now we report on nemosis initiation in bone marrow mesenchymal stem cells (BMSCs). Because BMSCs are being used increasingly in cell transplantation therapy we aimed to demonstrate a functional effect and benefit of BMSC nemosis for wound healing. Nemotic and monolayer cells were used to stimulate HaCaT keratinocyte migration in a scratch-wound healing assay. Both indicators of nemosis, HGF production and cyclooxygenase-2 expression, were induced in BMSC spheroids. When compared with a similar amount of cells as monolayer, nemotic cells induced keratinocyte in vitro scratch-wound healing in a concentration-dependent manner. The HGF receptor, c-Met, was rapidly phosphorylated in the nemosis-stimulated keratinocytes. Nemosis-induced in vitro scratch-wound healing was inhibited by an HGF-neutralizing antibody as well as the small molecule c-Met inhibitor, SU11274. HGF-induced in vitro scratch-wound healing was inhibited by PI3K inhibitors, wortmannin and LY294002, while LY303511, an inactive structural analogue of LY294002, had no effect. Inhibitors of the mitogen-activated protein kinases MEK/ERK1/2 (PD98059 and U0126), and p38 (SB203580) attenuated HGF-induced keratinocyte in vitro scratch-wound healing. We conclude that nemosis of BMSCs can induce keratinocyte in vitro scratch-wound healing, and that in this effect signaling via HGF/c-Met is involved.


Assuntos
Comunicação Celular/fisiologia , Queratinócitos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Cicatrização/fisiologia , Linhagem Celular , Fenômenos Fisiológicos Celulares/fisiologia , Ciclo-Oxigenase 2/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-met/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...