Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 114(30): 9912-9, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20666531

RESUMO

Thermal folding/unfolding kinetics of wild-type ubiquitin (wt-UBQ) was studied in a wide time range, from microseconds to seconds, by combining rapid-mixing T-jump and laser T-jump with fluorescence detection (MTJ-F and LTJ-F, respectively) to monitor the fluorescence changes of Tyr-59 located on the 310-helix. The kinetics occurs exclusively in the millisecond to second time range, and the decays are strictly single exponential. From global analysis of folding and unfolding decays, the kf and ku values were determined, without use of the equilibrium constant Ku. The activation enthalpy of folding is negative (DeltaHf(#)(Tm) = -10.8 kcal/mol), but the free energy of the transition state is substantially larger than that of the unfolded state (DeltaGf(#)(Tm) = 7.6 kcal/mol RTm). Thus, wt-UBQ behaves as a two-state folder, when folding is monitored by the fluorescence of Tyr-59. The observation of kinetics on the microsecond time scale, when folding is monitored by the disruption of hydrogen bonds between beta-strands, using nonlinear infrared spectroscopy of the amide I vibrations (LTJ-DVE) [Chung, H. S.; Tokmakoff, A. Proteins: Struct., Funct., Bioinf. 2008, 72, 474-487], seems to result from the fact that MTJ-F monitors the effective unfolding (backbone exposure to water) of the thermally excited protein alone, while LTJ-DVE also monitors preliminary events (hydrogen-bond breaking) and thermal re-equilibration of the thermally excited protein.


Assuntos
Tirosina/química , Ubiquitina/química , Animais , Varredura Diferencial de Calorimetria , Bovinos , Fluorescência , Cinética , Desnaturação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Temperatura , Termodinâmica , Fatores de Tempo
2.
Phys Chem Chem Phys ; 11(18): 3580-3, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19421564

RESUMO

Two highly fluorescent mutants of ubiquitin (E51Q and E51A) were produced by mutation of a single amino acid, demonstrating that excited-state proton transfer from the tyrosine residue to the carboxylate group of Glu-51 in ubiquitin is responsible for the reduced fluorescence of wild-type ubiquitin (wt-UBQ) at pH 5. E51A shows a Tm=59 degrees C at pH 1.5 and a Tm>80 degrees C at pH 5 similar to wt-UBQ, which shows that the mutation has not altered the protein structure significantly. The high and constant fluorescence from pH 1.5 to pH 7 allows for the study of the folding/unfolding over a wide range of pHs which would otherwise be impossible with wt-UBQ.


Assuntos
Tirosina/química , Ubiquitina/química , Ubiquitina/genética , Células Cultivadas , Fluorescência , Ácido Glutâmico/química , Ácido Glutâmico/genética , Concentração de Íons de Hidrogênio , Mutação Puntual , Dobramento de Proteína , Prótons , Espectrofotometria , Temperatura , Tirosina/genética
3.
J Phys Chem B ; 113(13): 4466-74, 2009 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-19249841

RESUMO

Time-resolved fluorescence spectroscopy was used to show that multiple tyrosine residues of a protein can serve as localized probes of structural changes during thermal unfolding. Cytochrome c'' from Methylophilus methylotrophus, which has four tyrosine residues, was chosen as a model protein. The procedure involved, first, the assignment of the experimental decay times to the tyrosine residues, followed by the interpretation of the changes in the decay times and pre-exponential coefficients with temperature. We found that the fluorescence decays of cytochrome c'' are double-exponential from 23 to 80 degrees C, with decay times much shorter than those of the parent compound N-acetyl-tyrosinamide; this quenching was ascribed to dipole-dipole energy transfer from the tyrosine residues to the heme. The tyrosine-heme distances (R) and theoretical decay times, tau(comp), were estimated for each tyrosine residue. The analysis of the simulated decay generated with tau(comp), showed that a double-exponential fit is sufficient to describe the four decay times with two pre-exponential coefficients close to values observed from the experimental decay. Therefore, the decay times at 23 degrees C could be assigned to the individual tyrosine residues as tau(1) to Tyr-10 and Tyr-23 (at 20.3 A) and tau(2) to Tyr-12 and Tyr-115 (at 12-14 A). On the basis of this assignment and MD simulations, the temperature dependence of the decay times and pre-exponential coefficients suggest that upon unfolding, Tyr-12 is displaced from the heme, with loss of the structure of alpha-helix I. Moreover, Tyr-115 remains close to the heme and the structure in this region of the protein is not altered significantly. Altogether the data support the view that the protein core, comprising the heme and the four alpha-helices II to V, is clearly more stable than the remaining region that includes alpha-helix I and the loop between residues 19-27.


Assuntos
Grupo dos Citocromos c/química , Grupo dos Citocromos c/metabolismo , Sondas Moleculares/química , Dobramento de Proteína , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Grupo dos Citocromos c/genética , Methylophilus/enzimologia , Methylophilus/genética , Modelos Moleculares , Estrutura Terciária de Proteína , Espectrometria de Fluorescência , Fatores de Tempo , Tirosina/genética , Tirosina/metabolismo
4.
Biophys J ; 92(12): 4401-14, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17384067

RESUMO

The six tyrosine residues of ribonuclease A (RNase A) are used as individual intrinsic probes for tracking local conformational changes during unfolding. The fluorescence decays of RNase A are well described by sums of three exponentials with decay times (tau(1) = 1.7 ns, tau(2) = 180 ps, and tau(3) = 30 ps) and preexponential coefficients (A(1) = 1, A(2) = 1, and A(3) = 4) at pH 7, 25 degrees C. The decay times are controlled by photo-induced electron transfer from individual tyrosine residues to the nearest disulphide (-SS-), bridge, which is distance (R) dependent. We assign tau(1) to Tyr-76 (R = 12.8 A), tau(2) to Tyr-115 (R = 6.9 A), and tau(3) to Tyr-25, Tyr-73, Tyr-92, and Tyr-97 (all four at R = 5.5 +/- 0.3 A) at 23 degrees C. On the basis of this assignment, the results show that, upon thermal or chemical unfolding only Tyr-25, Tyr-92, and Tyr-76 undergo significant displacement from their nearest -SS- bridge. Despite reporting on different regions of the protein, the concordance between the transition temperatures, T(m), obtained from Tyr-76 (T(m) = 59.2 degrees C) and Tyr-25 and Tyr-92 (T(m) = 58.2 degrees C) suggests a single unfolding event in this temperature range that affects all these regions similarly.


Assuntos
Modelos Químicos , Modelos Moleculares , Ribonuclease Pancreático/química , Ribonuclease Pancreático/ultraestrutura , Espectrometria de Fluorescência/métodos , Tirosina/química , Simulação por Computador , Cinética , Movimento (Física) , Conformação Proteica
5.
Biophys J ; 87(4): 2609-20, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15454455

RESUMO

The photophysics of the single tyrosine in bovine ubiquitin (UBQ) was studied by picosecond time-resolved fluorescence spectroscopy, as a function of pH and along thermal and chemical unfolding, with the following results: First, at room temperature (25 degrees C) and below pH 1.5, native UBQ shows single-exponential decays. From pH 2 to 7, triple-exponential decays were observed and the three decay times were attributed to the presence of tyrosine, a tyrosine-carboxylate hydrogen-bonded complex, and excited-state tyrosinate. Second, at pH 1.5, the water-exposed tyrosine of either thermally or chemically unfolded UBQ decays as a sum of two exponentials. The double-exponential decays were interpreted and analyzed in terms of excited-state intramolecular electron transfer from the phenol to the amide moiety, occurring in one of the three rotamers of tyrosine in UBQ. The values of the rate constants indicate the presence of different unfolded states and an increase in the mobility of the tyrosine residue during unfolding. Finally, from the pre-exponential coefficients of the fluorescence decays, the unfolding equilibrium constants (KU) were calculated, as a function of temperature or denaturant concentration. Despite the presence of different unfolded states, both thermal and chemical unfolding data of UBQ could be fitted to a two-state model. The thermodynamic parameters Tm = 54.6 degrees C, DeltaHTm = 56.5 kcal/mol, and DeltaCp = 890 cal/mol//K, were determined from the unfolding equilibrium constants calculated accordingly, and compared to values obtained by differential scanning calorimetry also under the assumption of a two-state transition, Tm = 57.0 degrees C, DeltaHm= 51.4 kcal/mol, and DeltaCp = 730 cal/mol//K.


Assuntos
Fotoquímica/métodos , Espectrometria de Fluorescência/métodos , Tirosina/química , Tirosina/efeitos da radiação , Ubiquitina/química , Ubiquitina/efeitos da radiação , Animais , Bovinos , Temperatura Alta , Concentração de Íons de Hidrogênio , Luz , Conformação Proteica , Desnaturação Proteica/efeitos da radiação , Dobramento de Proteína , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...