Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Saf ; 41(5): e12917, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34511666

RESUMO

The present investigation was performed to determine the stability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) under several industrial processing situations in dairies, including pasteurization, freezing, and storage in acidic conditions. Ten treatments were selected, including high-temperature short-time (HTST)-pasteurized low-fat milk, low-temperature long-time-pasteurized low-fat milk, extended shelf life (ESL)-pasteurized low-fat milk, HTST-pasteurized full-fat milk, LTLT-pasteurized full-fat milk, ESL-pasteurized full-fat milk, pasteurized cream, ice cream frozen and stored at -20 or -80°C, and Doogh (as a fermented milk drink with initial pH < 3.5) refrigerated for 28 days. The viral particles were quantified by RT-PCR methodology. Besides, the virus infectivity was assessed through fifty-percent tissue culture infective dose (TCID50) assay. These products were seeded with a viral load of 5.65 log TCID50/mL as a simulated cross-contamination condition. Pasteurization techniques were sufficient for complete inactivation of the SARS-CoV-2 in the most dairy products, and 1.85 log TCID50/mL virus reduction in full-fat milk (fat content = 3.22%). Freezing (either -20°C or -80°C) did not result in a virally safe product within 60 days of storage. Storage at high acidic conditions (initial pH < 3.5) completely hampered the viral load at the end of 28 days of refrigerated storage. This research represents an important practical achievement that the routine HTST pasteurization in dairies was inadequate to completely inactivate the viral load in full-fat milk, probably due to the protective effect of fat content. Furthermore, freezing retain the virus infectivity in food products, and therefore, relevant contaminated foods may act as carriers for SARS-CoV-2.

2.
Food Sci Nutr ; 9(9): 5146-5152, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34518780

RESUMO

The new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that was first found in 2019 in Wuhan, China, caused coronavirus disease 2019 (COVID-19). It then spread worldwide rapidly, causing the 2019-2020 coronavirus pandemic. To date, it has been indicated that various transmission ways might be participated in outbreaks of COVID-19. Among these, food products, whether raw or processed, might be carriers for SARS-CoV-2. Therefore, this study was aimed to evaluate the effect of cooking and microwave process of meat products and bread on the stability of SARS-CoV-2. In this regard, sausages and hamburger as meat products and toast bread were inoculated with a viral load of 5.70 log fifty percent tissue culture infective dose (TCID50)/mL in order to create a simulated cross-contamination condition. The results showed that frying of hamburger at 225ºC for about either 6 or 10 min resulted in complete inactivation of SARS-CoV-2. Furthermore, a 5-log decrease in SARS-CoV-2 load was observed in sausages as a consequence of cooking process at 78ºC for either 20 or 30 min. Additionally, the effect of microwave oven at power of 630 watt on stability of SARS-CoV-2 showed that exposing toast bread for either 30 s or 1 min in this power led to a 5-log decrease in SARS-CoV-2 load in the toast bread.

3.
Food Res Int ; 140: 109953, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33648208

RESUMO

Among the factors that adversely influence the viability of probiotics, the oxygen content of the product and the permeation of oxygen molecules through the packaging system have a noticeable role in the viability loss during the manufacture and storage of fermented milk products. The objective of this study was to examine the qualitative attributes of probiotic yogurt containing different O2 scavengers, including the commercial O2 absorber and cysteine-ascorbic acid. Bifidobacterium lactis BIA-7 and B. longum BIA-8 were used as probiotic strains for the production of bio-yogurts. The biochemical parameters, including the changes in pH, titratable acidity, redox potential and incubation time, were determined throughout the fermentation period at 30-min intervals. Also, the changes in viable count, pH, redox potential, titratable acidity, and dissolved oxygen were evaluated at 7-day intervals during the 28 days of refrigerated storage. In addition, the evaluation of rheological and sensory properties measured in the freshly made samples was carried out. The results showed that the utilization of different oxygen scavengers has an effective impact on the decrement of oxygen content and improvement of probiotic viability. As such, the population of B. lactis in the treatments containing various oxygen scavengers was maintained above 7 log CFU/mL throughout the refrigerated storage. Notwithstanding the effective function of cysteine-ascorbic acid in the enhancement of viability, the containing treatments had not only weaker gel structure probably due to short incubation time (360 min) and fast acidification [22.20-22.35 (˚D/min) × 10-2], but also lower sensory acceptance. Overall, the yogurt treatment containing commercial O2 scavenger and B. lactis indicated a great potential for the industrial applications. To the best of our knowledge, there is no study on the efficiency of commercial O2 absorber as a potential factor to maintain the viability of probiotics in yogurt.


Assuntos
Produtos Fermentados do Leite , Probióticos , Bifidobacterium , Fermentação , Iogurte
4.
Food Control ; 123: 107754, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33199941

RESUMO

At present, humanity is confronting with a novel life-threatening challenge from the COVID-19 pandemic infectious disease caused by the novel coronavirus SARS-CoV-2. To date, the various transmission modes of SARS-CoV-2 have not been completely determined. Food products might be carriers for SARS-CoV-2. The COVID-19 pandemic not only can spread through the respiratory tract like SARS and MERS but also the presence of the SARS-CoV-2 RNA in feces of several patients, shows the possibility of their fecal-oral route spread. Besides, people with gastric problems, including gastric intestinal metaplasia and atrophic gastritis, may be susceptible to this kind of COVID-19 infection. Accordingly, food may act as a potential vehicle of SARS-CoV-2 due to whether carry-through or carry-over contaminations. Considering carry-over, SARS-CoV-2 spread from personnel to food products or food surfaces is feasible. Beyond that, some shreds of evidence showed that pigs and rabbits can be infected by SARS-CoV-2. Thus, viral transmission through meat products may be conceivable, indicating carry-through contamination. As the spread rate of SARS-CoV-2 is high and its stability in different environments, especially food processing surfaces, is also remarkable, it may enter foods in whether industrialized processing or the traditional one. Therefore, established precautious acts is suggested to be applied in food processing units. The present review elucidates the risk of various staple food products, including meat and meat products, dairy products, bread, fruits, vegetables, and ready-to-eat foods as potential carriers for transmission of SARS-CoV-2.

5.
Int J Biol Macromol ; 158: 327-337, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32278602

RESUMO

Althaea rosea flowers were used to procure the gum (ARG) needed for film preparation. Pretest studies suggested 1.5% ARG + 50% glycerol as optimum for film preparation. The reinforcement impact of 3, 5, and 8 wt% bacterial nanocrystalline cellulose (BNC) incorporation (based on the dry weight of ARG) was investigated on the structural, mechanical, physical, thermal, optical, morphological, and barrier properties of films. The Results suggested that increasing the BNC concentration until a certain level (5 wt% BNC) could improve the latter properties. However, at higher concentration (8 wt% BNC), cellulose nanoparticles tended to agglomerate, which led to the impairment of some of those properties, especially barrier properties. According to AFM and SEM results, BNC addition increased surface roughness and coarseness. All BNC-loaded films showed better functions compared to control sample (0 wt% BNC) and the film containing 5 wt% BNC was suggested as the optimum film.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA