Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 120(4): 577-585, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33460599

RESUMO

We discuss recent observations of polymorphic chromatin packaging at the oligonucleosomal level and compare them with computer simulations. Our computations reveal two topologically different families of two-start 30-nm fiber conformations distinguished by the linker length L; fibers with L ≈ 10n and L ≈ 10n+5 basepairs have DNA linking numbers per nucleosome of ΔLk ≈ -1.5 and -1.0, respectively (where n is a natural number). Although fibers with ΔLk ≈ -1.5 were observed earlier, the topoisomer with ΔLk ≈ -1.0 is novel. These predictions were confirmed experimentally for circular nucleosome arrays with precisely positioned nucleosomes. We suggest that topological polymorphism of chromatin may play a role in transcription, with the {10n+5} fibers producing transcriptionally competent chromatin structures. This hypothesis is consistent with available data for yeast and, partially, for fly. We show that both fiber topoisomers (with ΔLk ≈ -1.5 and -1.0) have to be taken into account to interpret experimental data obtained using new techniques: genome-wide Micro-C, Hi-CO, and RICC-seq, as well as self-association of nucleosome arrays in vitro. The relative stability of these topoisomers is likely to depend on epigenetic histone modifications modulating the strength of internucleosome interactions. Potentially, our findings may reflect a general tendency of functionally distinct parts of the genome to retain topologically different higher-order structures.


Assuntos
Cromatina , Nucleossomos , Cromatina/genética , DNA , Modelos Moleculares , Conformação Molecular , Nucleossomos/genética
2.
Nat Struct Mol Biol ; 27(12): 1105-1114, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32929283

RESUMO

During interphase, the eukaryotic genome is organized into chromosome territories that are spatially segregated into compartment domains. The extent to which interacting domains or chromosomes are entangled is not known. We analyze series of co-occurring chromatin interactions using multi-contact 3C (MC-3C) in human cells to provide insights into the topological entanglement of chromatin. Multi-contact interactions represent percolation paths (C-walks) through three-dimensional (3D) chromatin space. We find that the order of interactions within C-walks that occur across interfaces where chromosomes or compartment domains interact is not random. Polymer simulations show that such C-walks are consistent with distal domains being topologically insulated, that is, not catenated. Simulations show that even low levels of random strand passage, for example by topoisomerase II, would result in entanglements, increased mixing at domain interfaces and an order of interactions within C-walks not consistent with experimental MC-3C data. Our results indicate that, during interphase, entanglements between chromosomes and chromosomal domains are rare.


Assuntos
Cromatina/ultraestrutura , Cromossomos Humanos/ultraestrutura , Genoma Humano , Interfase , Comunicação Celular , Cromatina/química , Cromossomos Humanos/química , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Células HeLa , Humanos , Imageamento Tridimensional , Simulação de Dinâmica Molecular
3.
J Biol Chem ; 294(11): 4233-4246, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30630950

RESUMO

The length of linker DNA that separates nucleosomes is highly variable, but its mechanistic role in modulating chromatin structure and functions remains unknown. Here, we established an experimental system using circular arrays of positioned nucleosomes to investigate whether variations in nucleosome linker length could affect nucleosome folding, self-association, and interactions. We conducted EM, DNA topology, native electrophoretic assays, and Mg2+-dependent self-association assays to study intrinsic folding of linear and circular nucleosome arrays with linker DNA length of 36 bp and 41 bp (3.5 turns and 4 turns of DNA double helix, respectively). These experiments revealed that potential artifacts arising from open DNA ends and full DNA relaxation in the linear arrays do not significantly affect overall chromatin compaction and self-association. We observed that the 0.5 DNA helical turn difference between the two DNA linker lengths significantly affects DNA topology and nucleosome interactions. In particular, the 41-bp linkers promoted interactions between any two nucleosome beads separated by one bead as expected for a zigzag fiber, whereas the 36-bp linkers promoted interactions between two nucleosome beads separated by two other beads and also reduced negative superhelicity. Monte Carlo simulations accurately reproduce periodic modulations of chromatin compaction, DNA topology, and internucleosomal interactions with a 10-bp periodicity. We propose that the nucleosome spacing and associated chromatin structure modulations may play an important role in formation of different chromatin epigenetic states, thus suggesting implications for how chromatin accessibility to DNA-binding factors and the RNA transcription machinery is regulated.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Nucleossomos/química , Nucleossomos/metabolismo , Animais , Galinhas , Modelos Moleculares , Nucleossomos/genética , Análise de Sequência de DNA
4.
Biophys J ; 115(9): 1644-1655, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30236784

RESUMO

To elucidate conformational dynamics of chromatin fibers, we compared available force-spectroscopy measurements with extensive Monte Carlo simulations of nucleosome arrays under external force. Our coarse-grained model of chromatin includes phenomenological energy terms for the DNA-histone adhesion and the internucleosome stacking interactions. We found that the Monte Carlo fiber ensembles simulated with increasing degrees of DNA unwrapping and the stacking energy 8 kT can account for the intricate force-extension response observed experimentally. Our analysis shows that at low external forces (F < 3.0 picoNewtons), the DNA ends in nucleosomes breathe by ∼10 bp. Importantly, under these conditions, the fiber is highly dynamic, exhibiting continuous unstacking-restacking transitions, allowing accessibility of transcription factors to DNA, while maintaining a relatively compact conformation. Of note, changing the stacking interaction by a few kT, an in silico way to mimic histone modifications, is sufficient to transform an open chromatin state into a compact fiber. The fibers are mostly two-start zigzag folds with rare occurrences of three- to five-start morphologies. The internucleosome stacking is lost during the linear response regime. At the higher forces exceeding 4 picoNewtons, the nucleosome unwrapping becomes stochastic and asymmetric, with one DNA arm opened by ∼55 bp and the other arm only by ∼10 bp. Importantly, this asymmetric unwrapping occurs for any kind of sequence, including the symmetric ones. Our analysis brings new, to our knowledge, insights in dynamics of chromatin modulated by histone epigenetic modifications and molecular motors such as RNA polymerase.


Assuntos
Cromatina/metabolismo , Fenômenos Mecânicos , Método de Monte Carlo , Análise Espectral , Fenômenos Biomecânicos , Cromatina/química , DNA/química , DNA/metabolismo , Histonas/química , Histonas/metabolismo , Modelos Moleculares , Conformação Molecular
5.
J Mol Biol ; 430(18 Pt B): 3093-3110, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-29959925

RESUMO

It has long been suggested that chromatin may form a fiber with a diameter of ~30 nm that suppresses transcription. Despite nearly four decades of study, the structural nature of the 30-nm chromatin fiber and conclusive evidence of its existence in vivo remain elusive. The key support for the existence of specific 30-nm chromatin fiber structures is based on the determination of the structures of reconstituted nucleosome arrays using X-ray crystallography and single-particle cryo-electron microscopy coupled with glutaraldehyde chemical cross-linking. Here we report the characterization of these nucleosome arrays in solution using analytical ultracentrifugation, NMR, and small-angle X-ray scattering. We found that the physical properties of these nucleosome arrays in solution are not consistent with formation of just a few discrete structures of nucleosome arrays. In addition, we obtained a crystal of the nucleosome in complex with the globular domain of linker histone H5 that shows a new form of nucleosome packing and suggests a plausible alternative compact conformation for nucleosome arrays. Taken together, our results challenge the key evidence for the existence of a limited number of structures of reconstituted nucleosome arrays in solution by revealing that the reconstituted nucleosome arrays are actually best described as an ensemble of various conformations with a zigzagged arrangement of nucleosomes. Our finding has implications for understanding the structure and function of chromatin in vivo.


Assuntos
Modelos Moleculares , Nucleossomos/química , Nucleossomos/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cristalografia por Raios X , Dissulfetos/química , Conformação Molecular , Soluções , Relação Estrutura-Atividade
6.
Sci Adv ; 3(10): e1700957, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29098179

RESUMO

In eukaryotic nucleosomes, DNA makes ~1.7 superhelical turns around histone octamer. However, there is a long-standing discrepancy between the nucleosome core structure determined by x-ray crystallography and measurements of DNA topology in circular minichromosomes, indicating that there is only ~1.0 superhelical turn per nucleosome. Although several theoretical assumptions were put forward to explain this paradox by conformational variability of the nucleosome linker, none was tested experimentally. We analyzed topological properties of DNA in circular nucleosome arrays with precisely positioned nucleosomes. Using topological electrophoretic assays and electron microscopy, we demonstrate that the DNA linking number per nucleosome strongly depends on the nucleosome spacing and varies from -1.4 to -0.9. For the predominant {10n + 5} class of nucleosome repeats found in native chromatin, our results are consistent with the DNA topology observed earlier. Thus, we reconcile the topological properties of nucleosome arrays with nucleosome core structure and provide a simple explanation for the DNA topology in native chromatin with variable DNA linker length. Topological polymorphism of the chromatin fibers described here may reflect a more general tendency of chromosomal domains containing active or repressed genes to acquire different nucleosome spacing to retain topologically distinct higher-order structures.


Assuntos
Cromatina/química , DNA/química , Nucleossomos/química , Cromatina/genética , Cromatina/metabolismo , DNA/genética , DNA/metabolismo , Modelos Moleculares , Conformação Molecular , Nucleossomos/metabolismo , Plasmídeos/química , Plasmídeos/genética , Ligação Proteica , Relação Estrutura-Atividade
7.
Nucleic Acids Res ; 45(16): 9372-9387, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28934465

RESUMO

Linker DNA conformational variability has been proposed to direct nucleosome array folding into more or less compact chromatin fibers but direct experimental evidence for such models are lacking. Here, we tested this hypothesis by designing nucleosome arrays with A-tracts at specific locations in the nucleosome linkers to induce inward (AT-IN) and outward (AT-OUT) bending of the linker DNA. Using electron microscopy and analytical centrifugation techniques, we observed spontaneous folding of AT-IN nucleosome arrays into highly compact structures, comparable to those induced by linker histone H1. In contrast, AT-OUT nucleosome arrays formed less compact structures with decreased nucleosome interactions similar to wild-type nucleosome arrays. Adding linker histone H1 further increased compaction of the A-tract arrays while maintaining structural differences between them. Furthermore, restriction nuclease digestion revealed a strongly reduced accessibility of nucleosome linkers in the compact AT-IN arrays. Electron microscopy analysis and 3D computational Monte Carlo simulations are consistent with a profound zigzag linker DNA configuration and closer nucleosome proximity in the AT-IN arrays due to inward linker DNA bending. We propose that the evolutionary preferred positioning of A-tracts in DNA linkers may control chromatin higher-order folding and thus influence cellular processes such as gene expression, transcription and DNA repair.


Assuntos
Cromatina/química , DNA/química , Nucleossomos/química , Adenina/química , Animais , Cromatina/ultraestrutura , Histonas/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Nucleossomos/metabolismo
8.
Ren Fail ; 39(1): 211-221, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27846769

RESUMO

Blood and urine biochemistry screening tests are important for initial detection of diabetes, determination of severity of its complications, and monitoring of therapy. We evaluated the effects of aqueous chicory seed extract (CSE), on renal biochemical parameters, histology, and Na+/glucose cotansporters, SGLT1 and SGLT2 expression levels using metformin, and aspirin as controls. Late stage type 2 diabetes (LT2D; FBS, >300 mg/dl) and early stage type 2 diabetes (ET2D; FBS, 140-220 mg/dl) were induced in rats by streptozotocin (STZ group) and a combination of STZ and niacinamide (NIA/STZ group), respectively. A non-diabetic group was included as control. Treatment included daily intraperitoneal injections of either CSE (125 mg/kg b.w.) or metformin (100 mg/kg b.w.) and oral aspirin (120 mg/kg b.w.) for 21 days. At the end, blood and 24 h urine samples were collected; and kidneys were saved at -80 ËšC. CSE reduced urinary α1-microgobulin excretion in ET2D (p = .043), and serum uric acid (p = .045), and glomerular diameter (p < .01) in LT2D. Metformin appeared to be more effective in LT2D with respect to serum uric acid, urea, and BUN (< .05). Both CSE and metformin improved histology. Aspirin improved several blood and urine variables, but appeared to aggravate morphological damages to the kidney tissue. The absolute values of albumin, α1-microglobulin or total protein in urine rather than their creatinine ratios seemed more useful in the detection of early kidney damage; CSE was able to repair the kidney damage and α1-microglobulin was sensitive enough to allow monitoring of the improvements caused by the treatment.


Assuntos
Cichorium intybus/química , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Extratos Vegetais/farmacologia , Animais , Glicemia/metabolismo , Creatinina/metabolismo , Nefropatias Diabéticas/patologia , Glucose/metabolismo , Rim/fisiopatologia , Masculino , Ratos , Ratos Wistar , Sementes/química , Estreptozocina , Ácido Úrico/metabolismo
9.
J Biol Phys ; 43(1): 5-14, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27752804

RESUMO

A DNA enzyme with peroxidase activity is a G-quadruplex-based DNAzyme formed by hemin and G-quadruplex DNA. Activity of peroxide DNAzymes can be influenced by the structure of quadruplex DNA. In this investigation, the interaction of hemin with T30695 G-quadruplex DNA is evaluated. Molecular dynamic simulation indicates that the binding mode of hemin to G-quadruplex DNA is end-stacking, which is consistent with absorption spectroscopy. Based on fluorescence spectroscopy, hemin ejects thiazole orange from bases of four-strand DNA. Circular dichroism spectra showed that no alteration occurs in this type of DNA structure. Graphical Abstract Peroxidase DNAzyme is formed by hemin and G-quadruplex DNA.


Assuntos
Quadruplex G , Hemina/metabolismo , Sequência de Bases , Biocatálise , DNA Catalítico/química , DNA Catalítico/genética , DNA Catalítico/metabolismo , Simulação de Dinâmica Molecular
10.
Mater Sci Eng C Mater Biol Appl ; 58: 1188-93, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26478420

RESUMO

c-MYC DNA is an attractive target for drug design, especially for cancer chemotherapy. Around 90% of c-MYC transcription is controlled by NHE III1, whose 27-nt purine-rich strand has the ability to form G-quadruplex structure. In this investigation, interaction of ActD with 27-nt G-rich strand (G/c-MYC) and its equimolar mixture with the complementary sequence, (GC/c-MYC) as well as related C-rich oligonucleotide (C/c-MYC) was evaluated. Molecular dynamic simulations showed that phenoxazine and lactone rings of ActD come close to the outer G-tetrad nucleotides indicating that ActD binds through end-stacking to the quadruplex DNA. RMSD and RMSF revealed that fluctuation of the quadruplex DNA increases upon interaction with the drug. The results of spectrophotometry and spectrofluorometry indicated that ActD most probably binds to the c-MYC quadruplex and duplex DNA via end-stacking and intercalation, respectively and polarity of ActD environment decreases due to the interaction. It was also found that binding of ActD to the GC-rich DNA is stronger than the two other forms of DNA. Circular dichroism results showed that the type of the three forms of DNA structures doesn't change, but their compactness alters due to their interaction with ActD. Finally, it can be concluded that ActD binds differently to double stranded DNA, quadruplex DNA and i-motif.


Assuntos
DNA/metabolismo , Dactinomicina/metabolismo , Quadruplex G , Genes myc/genética , Oligonucleotídeos/metabolismo , Regiões Promotoras Genéticas/genética , DNA/química , Dactinomicina/química , Simulação de Dinâmica Molecular , Oligonucleotídeos/química , Análise Espectral
11.
Biophys J ; 108(10): 2591-2600, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25992737

RESUMO

Specific details concerning the spatial organization of nucleosomes in 30 nm fibers remain unknown. To investigate this, we analyzed all stereochemically possible configurations of two-start nucleosome fibers with short DNA linkers L = 13-37 bp (nucleosome repeat length (NRL) = 160-184 bp). Four superhelical parameters-inclination of nucleosomes, twist, rise, and diameter-uniquely describe a regular symmetric fiber. The energy of a fiber is defined as the sum of four terms: elastic energy of the linker DNA, steric repulsion, electrostatics, and a phenomenological (H4 tail-acidic patch) interaction between two stacked nucleosomes. By optimizing the fiber energy with respect to the superhelical parameters, we found two types of topological transition in fibers (associated with the change in inclination angle): one caused by an abrupt 360° change in the linker DNA twisting (change in the DNA linking number, ΔLk = 1), and another caused by overcrossing of the linkers (ΔLk = 2). To the best of our knowledge, this topological polymorphism of the two-start fibers was not reported in the computations published earlier. Importantly, the optimal configurations of the fibers with linkers L = 10n and 10n + 5 bp are characterized by different values of the DNA linking number-that is, they are topologically different. Our results are consistent with experimental observations, such as the inclination 60° to 70° (the angle between the nucleosomal disks and the fiber axis), helical rise, diameter, and left-handedness of the fibers. In addition, we make several testable predictions, among them different degrees of DNA supercoiling in fibers with L = 10n and 10n + 5 bp, different flexibility of the two types of fibers, and a correlation between the local NRL and the level of transcription in different parts of the yeast genome.


Assuntos
Simulação de Dinâmica Molecular , Nucleossomos/química , Sequência de Aminoácidos , Sequência de Bases , DNA/química , Elasticidade , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica , Eletricidade Estática
12.
AIMS Biophys ; 2(4): 613-629, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-28133628

RESUMO

The spatial organization of nucleosomes in 30-nm fibers remains unknown in detail. To tackle this problem, we analyzed all stereochemically possible configurations of two-start chromatin fibers with DNA linkers L = 10-70 bp (nucleosome repeat length NRL = 157-217 bp). In our model, the energy of a fiber is a sum of the elastic energy of the linker DNA, steric repulsion, electrostatics, and the H4 tail-acidic patch interaction between two stacked nucleosomes. We found two families of energetically feasible conformations of the fibers-one observed earlier, and the other novel. The fibers from the two families are characterized by different DNA linking numbers-that is, they are topologically different. Remarkably, the optimal geometry of a fiber and its topology depend on the linker length: the fibers with linkers L = 10n and 10n + 5 bp have DNA linking numbers per nucleosome ΔLk ≈ -1.5 and -1.0, respectively. In other words, the level of DNA supercoiling is directly related to the length of the inter-nucleosome linker in the chromatin fiber (and therefore, to NRL). We hypothesize that this topological polymorphism of chromatin fibers may play a role in the process of transcription, which is known to generate different levels of DNA supercoiling upstream and downstream from RNA polymerase. A genome-wide analysis of the NRL distribution in active and silent yeast genes yielded results consistent with this assumption.

13.
J Biomol Struct Dyn ; 32(1): 104-14, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23384279

RESUMO

DNA conformation in complex with proteins is far from its canonical B-form. The affinity of complex formation and structure of DNA depend on its attachment configuration and sequence. In this article, we develop a mechanical model to address the problem of DNA structure and energy under deformation. DNA in nucleosome core particle is described as an example. The structure and energy of nucleosomal DNA is calculated based on its sequence and positioning state. The inferred structure has remarkable similarity with X-ray data. Although there is no sequence-specific interaction of bases and the histone core, we found considerable sequence dependency for the nucleosomal DNA positioning. The affinity of nucleosome formation for several sequences is examined and the differences are compatible with observations. We argue that structural energy determines the natural state of nucleosomal DNA and is the main reason for affinity differences in vitro. This theory can be utilized for the DNA structure and energy determination in protein-DNA complexes in general. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:17.


Assuntos
DNA/química , Nucleossomos/química , Histonas/química , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Nucleossomos/genética
14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(6 Pt 1): 061925, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23005145

RESUMO

The distribution of counterions and the electrostatic interaction between two similarly charged dielectric slabs is studied in the strong coupling limit. Dielectric inhomogeneities and discreteness of charge on the slabs have been taken into account. It is found that the amount of dielectric constant difference between the slabs and the environment, and the discreteness of charge on the slabs have opposing effects on the equilibrium distribution of the counterions. At small interslab separations, increasing the amount of dielectric constant difference increases the tendency of the counterions toward the middle of the intersurface space between the slabs and the discreteness of charge pushes them to the surfaces of the slabs. In the limit of point charges, independent of the strength of dielectric inhomogeneity, counterions distribute near the surfaces of the slabs. The interaction between the slabs is attractive at low temperatures and its strength increases with the dielectric constant difference. At room temperature, the slabs may completely attract each other, reach to an equilibrium separation, or have two equilibrium separations with a barrier in between, depending on the system parameters.


Assuntos
Íons , Membranas Artificiais , Modelos Químicos , Eletricidade Estática , Simulação por Computador , Propriedades de Superfície
15.
Phys Rev Lett ; 101(16): 168103, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18999717

RESUMO

The equilibrium three dimensional shape of relatively short loops of DNA is studied using an elastic model that takes into account anisotropy in bending rigidities. Using a reasonable estimate for the anisotropy, it is found that cyclized DNA with lengths that are not integer multiples of the pitch take on nontrivial shapes that involve bending out of planes and formation of kinks. The effect of sequence inhomogeneity on the shape of DNA is addressed, and shown to enhance the geometrical features. These findings could shed some light on the role of DNA conformation in protein-DNA interactions.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Algoritmos , Anisotropia , Elasticidade , Modelos Moleculares , Modelos Estatísticos
16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(6 Pt 1): 061914, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17280103

RESUMO

Measurements with an atomic force microscope (AFM) offer a direct way to probe elastic properties of lipid bilayer membranes locally: provided the underlying stress-strain relation is known, material parameters such as surface tension or bending rigidity may be deduced. In a recent experiment a pore-spanning membrane was poked with an AFM tip, yielding a linear behavior of the force-indentation curves. A theoretical model for this case is presented here which describes these curves in the framework of Helfrich theory. The linear behavior of the measurements is reproduced if one neglects the influence of adhesion between tip and membrane. Including it via an adhesion balance changes the situation significantly: force-distance curves cease to be linear, hysteresis and nonzero detachment forces can show up. The characteristics of this rich scenario are discussed in detail in this paper.


Assuntos
Bicamadas Lipídicas/química , Lipossomos/química , Fluidez de Membrana , Micromanipulação/métodos , Microscopia de Força Atômica/métodos , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Elasticidade , Membranas Artificiais , Conformação Molecular , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...