Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pain ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38015628

RESUMO

ABSTRACT: Neuropathic pain causes both sensory and emotional maladaptation. Preclinical animal studies of neuropathic pain-induced negative affect could result in novel insights into the mechanisms of chronic pain. Modeling pain-induced negative affect, however, is variable across research groups and conditions. The same injury may or may not produce robust negative affective behavioral responses across different species, strains, and laboratories. Here, we sought to identify negative affective consequences of the spared nerve injury model on C57BL/6J male and female mice. We found no significant effect of spared nerve injury across a variety of approach-avoidance conflict, hedonic choice, and coping strategy assays. We hypothesized these inconsistencies may stem in part from the short test duration of these assays. To test this hypothesis, we used the homecage-based Feeding Experimentation Device version 3 to conduct 12-hour, overnight progressive ratio testing to determine whether mice with chronic spared nerve injury had decreased motivation to earn palatable food rewards. Our data demonstrate that despite equivalent task learning, spared nerve injury mice are less motivated to work for a sugar pellet than sham controls. Furthermore, when we normalized behavioral responses across all the behavioral assays we tested, we found that a combined normalized behavioral score is predictive of injury state and significantly correlates with mechanical thresholds. Together, these results suggest that homecage-based operant behaviors provide a useful platform for modeling nerve injury-induced negative affect and that valuable pain-related information can arise from agglomerative data analyses across behavioral assays-even when individual inferential statistics do not demonstrate significant mean differences.

2.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961541

RESUMO

The locus coeruleus (LC) plays a paradoxical role in chronic pain. Although largely known as a potent source of endogenous analgesia, increasing evidence suggests injury can transform the LC into a chronic pain generator. We sought to clarify the role of this system in pain. Here, we show optogenetic inhibition of LC activity is acutely antinociceptive. Following long-term spared nerve injury, the same LC inhibition is analgesic - further supporting its pain generator function. To identify inhibitory substrates that may naturally serve this function, we turned to endogenous LC mu opioid receptors (LC-MOR). These receptors provide powerful LC inhibition and exogenous activation of LC-MOR is antinociceptive. We therefore hypothesized that endogenous LC-MOR-mediated inhibition is critical to how the LC modulates pain. Using cell type-selective conditional knockout and rescue of LC-MOR receptor signaling, we show these receptors bidirectionally regulate thermal and mechanical hyperalgesia - providing a functional gate on the LC pain generator.

3.
bioRxiv ; 2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37461475

RESUMO

Most animal models of neuropathic pain use targeted nerve injuries quantified with motor reflexive measures in response to an applied noxious stimulus. These motor reflexive measures can only accurately represent a pain response if motor function in also intact. The commonly used spared nerve injury (SNI) model, however, damages the tibial and common peroneal nerves that should result in motor phenotypes (i.e., an immobile or "flail" foot) not typically captured in sensory assays. To test the extent of these issues, we used DeepLabCut, a deep learning-based markerless pose estimation tool to quantify spontaneous limb position in C57BL/6J mice during tail suspension following either SNI or sham surgery. Using this granular detail, we identified the expected flail foot-like impairment, but we also found SNI mice hold their injured limb closer to the body midline compared to shams. These phenotypes were not present in the Complete Freunds Adjuvant model of inflammatory pain and were not reversed by multiple analgesics with different mechanisms of action, suggesting these SNI-specific phenotypes are not directly related to pain. Together these results suggest SNI causes previously undescribed phenotypes unrelated to altered sensation that are likely underappreciated while interpreting preclinical pain research outcomes.

4.
Nat Biomed Eng ; 6(6): 771-786, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34824397

RESUMO

The use of rodents to acquire understanding of the function of neural circuits and of the physiological, genetic and developmental underpinnings of behaviour has been constrained by limitations in the scalability, automation and high-throughput operation of implanted wireless neural devices. Here we report scalable and modular hardware and software infrastructure for setting up and operating remotely programmable miniaturized wireless networks leveraging Bluetooth Low Energy for the study of the long-term behaviour of large groups of rodents. The integrated system allows for automated, scheduled and real-time experimentation via the simultaneous and independent use of multiple neural devices and equipment within and across laboratories. By measuring the locomotion, feeding, arousal and social behaviours of groups of mice or rats, we show that the system allows for bidirectional data transfer from readily available hardware, and that it can be used with programmable pharmacological or optogenetic stimulation. Scalable and modular wireless-network infrastructure should facilitate the remote operation of fully automated large-scale and long-term closed-loop experiments for the study of neural circuits and animal behaviour.


Assuntos
Neurociências , Tecnologia sem Fio , Animais , Comportamento Animal , Camundongos , Optogenética , Próteses e Implantes , Ratos
5.
Elife ; 102021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33779547

RESUMO

Feeding is critical for survival, and disruption in the mechanisms that govern food intake underlies disorders such as obesity and anorexia nervosa. It is important to understand both food intake and food motivation to reveal mechanisms underlying feeding disorders. Operant behavioral testing can be used to measure the motivational component to feeding, but most food intake monitoring systems do not measure operant behavior. Here, we present a new solution for monitoring both food intake and motivation in rodent home-cages: the Feeding Experimentation Device version 3 (FED3). FED3 measures food intake and operant behavior in rodent home-cages, enabling longitudinal studies of feeding behavior with minimal experimenter intervention. It has a programmable output for synchronizing behavior with optogenetic stimulation or neural recordings. Finally, FED3 design files are open-source and freely available, allowing researchers to modify FED3 to suit their needs.


Obesity and anorexia nervosa are two health conditions related to food intake. Researchers studying these disorders in animal models need to both measure food intake and assess behavioural factors: that is, why animals seek and consume food. Measuring an animal's food intake is usually done by weighing food containers. However, this can be inaccurate due to the small amount of food that rodents eat. As for studying feeding motivation, this can involve calculating the number of times an animal presses a lever to receive a food pellet. These tests are typically conducted in hour-long sessions in temporary testing cages, called operant boxes. Yet, these tests only measure a brief period of a rodent's life. In addition, it takes rodents time to adjust to these foreign environments, which can introduce stress and may alter their feeding behaviour. To address this, Matikainen-Ankney, Earnest, Ali et al. developed a device for monitoring food intake and feeding behaviours around the clock in rodent home cages with minimal experimenter intervention. This 'Feeding Experimentation Device' (FED3) features a pellet dispenser and two 'nose-poke' sensors to measure total food intake, as well as motivation for and learning about food rewards. The battery-powered, wire-free device fits in standard home cages, enabling long-term studies of feeding behaviour with minimal intervention from investigators and less stress on the animals. This means researchers can relate data to circadian rhythms and meal patterns, as Matikainen-Ankney did here. Moreover, the device software is open-source so researchers can customise it to suit their experimental needs. It can also be programmed to synchronise with other instruments used in animal experiments, or across labs running the same behavioural tasks for multi-site studies. Used in this way, it could help improve reproducibility and reliability of results from such studies. In summary, Matikainen-Ankney et al. have presented a new practical solution for studying food-related behaviours in mice and rats. Not only could the device be useful to researchers, it may also be suitable to use in educational settings such as teaching labs and classrooms.


Assuntos
Criação de Animais Domésticos , Condicionamento Operante , Desenho de Equipamento/instrumentação , Comportamento Alimentar , Abrigo para Animais , Roedores/fisiologia , Animais , Ingestão de Alimentos , Feminino , Masculino , Camundongos
6.
Behav Brain Res ; 368: 111903, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-30981735

RESUMO

Reward availability and the potential for danger or safety potently regulate emotion. Despite women being more likely than men to develop emotion dysregulation disorders, there are comparatively few studies investigating fear, safety and reward regulation in females. Here, we show that female Long Evans rats did not suppress conditioned freezing in the presence of a safety cue, nor did they extinguish their freezing response, whereas males did both. Females were also more reward responsive during the reward cue until the first footshock exposure, at which point there were no sex differences in reward seeking to the reward cue. Darting analyses suggest females were able to regulate this behavior in response to the safety cue, suggesting they were able to discriminate between fear and safety cues but did not demonstrate this with conditioned suppression of freezing behavior. However, levels of darting in this study were too low to make any definitive conclusions. In summary, females showed a significantly different behavioral profile than males in a task that tested the ability to discriminate among fear, safety and reward cues. This paradigm offers a great opportunity to test for mechanisms that are generating these behavioral sex differences in learned safety and reward seeking.


Assuntos
Aprendizagem por Discriminação/fisiologia , Medo/fisiologia , Animais , Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , Sinais (Psicologia) , Extinção Psicológica/fisiologia , Medo/psicologia , Feminino , Masculino , Ratos , Ratos Long-Evans , Recompensa , Segurança , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...