Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 495(1): 70-83, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16432899

RESUMO

Abnormal subgranular zone (SGZ) neurogenesis is proposed to contribute to Alzheimer's disease (AD)-related decreases in hippocampal function. Our goal was to examine hippocampal neurogenesis in the PDAPP mouse, a model of AD with age-dependent accumulation of amyloid-beta(42) (Abeta(42))-containing plaques that is well studied with regard to AD therapies. A secondary goal was to determine whether altered neurogenesis in the PDAPP mouse is associated with abnormal maturation or number of mature cells. A tertiary goal was to provide insight into why hippocampal neurogenesis appears to be increased in AD post-mortem tissue and decreased in most AD mouse models. We report an age-dependent decrease in SGZ proliferation in homozygous PDAPP mice. At 1 year of age, PDAPP mice also had new dentate gyrus granule neurons with abnormal maturation and fewer dying cells relative to control mice. In contrast to decreased SGZ cell birth, PDAPP mice had increased birth of immature neurons in the outer portion of the granule cell layer (oGCL), providing insight into why some studies link AD with increased neurogenesis. However, these ectopic oGCL cells were still rare compared with SGZ proliferating cells, emphasizing that the primary characteristic of PDAPP mice is decreased neurogenesis. The decrease in SGZ neurogenesis was not associated with an age-dependent loss of dentate granule neurons. The altered neurogenesis in the PDAPP mouse may contribute to the age-related cognitive deficits reported in this model of AD and may be a useful adjunct target for assessing the impact of AD therapies.


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proliferação de Células , Giro Denteado/fisiopatologia , Plasticidade Neuronal/genética , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Apoptose/genética , Diferenciação Celular/genética , Divisão Celular/genética , Sobrevivência Celular/genética , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Mutantes Neurológicos , Camundongos Transgênicos , Mutação/genética , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/patologia
2.
J Neurosci Res ; 76(6): 783-94, 2004 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15160390

RESUMO

The birth of cells with neurogenic potential in the adult brain is assessed commonly by detection of exogenous S phase markers, such as bromodeoxyuridine (BrdU). Analysis of other phases of the cell cycle, however, can provide insight into how external factors, such as opiates, influence the cycling of newly born cells. To this end, we examined the expression of two endogenous cell cycle markers in relation to BrdU: proliferating cell nuclear antigen (PCNA) and phosphorylated histone H3 (pHisH3). Two hours after one intraperitoneal BrdU injection, BrdU-, PCNA-, and pHisH3-immunoreactive (IR) cells exhibited similar distribution in the adult mouse subgranular zone (SGZ). Quantitative analysis within the SGZ revealed a relative abundance of cells labeled for PCNA > BrdU >> pHisH3. Similar to our reports in rat SGZ, chronic morphine treatment decreased BrdU- and PCNA-IR cells in mouse SGZ by 28 and 38%, respectively. We also show that pHisH3-IR cells are influenced by chronic morphine to a greater extent (58% decrease) than are BrdU- or PCNA-IR cells. Cell cycle phase analysis of SGZ BrdU-IR cells using triple labeling for BrdU, PCNA, and pHisH3 revealed premature mitosis in chronic morphine-treated mice. These results suggest that morphine-treated mice have a shorter Gap2/mitosis (G(2)/M) phase when compared to sham-treated mice. These findings demonstrate the power of using a combination of exogenous and endogenous cell cycle markers and nuclear morphology to track proliferating cells through different phases of the cell cycle and to reveal the regulation of cell cycle phase by chronic morphine.


Assuntos
Ciclo Celular/efeitos dos fármacos , Hipocampo/citologia , Histonas/efeitos dos fármacos , Morfina/administração & dosagem , Neurônios/efeitos dos fármacos , Antígeno Nuclear de Célula em Proliferação/efeitos dos fármacos , Animais , Biomarcadores , Bromodesoxiuridina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Esquema de Medicação , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Histonas/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/metabolismo , Fosforilação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA