Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686538

RESUMO

Mechanical load is a potent regulator of cardiac structure and function. Although high workload during heart failure is associated with disruption of cardiomyocyte t-tubules and Ca2+ homeostasis, it remains unclear whether changes in preload and afterload may promote adaptive t-tubule remodelling. We examined this issue by first investigating isolated effects of stepwise increases in load in cultured rat papillary muscles. Both preload and afterload increases produced a biphasic response, with the highest t-tubule densities observed at moderate loads, whereas excessively low and high loads resulted in low t-tubule levels. To determine the baseline position of the heart on this bell-shaped curve, mice were subjected to mildly elevated preload or afterload (1 week of aortic shunt or banding). Both interventions resulted in compensated cardiac function linked to increased t-tubule density, consistent with ascension up the rising limb of the curve. Similar t-tubule proliferation was observed in human patients with moderately increased preload or afterload (mitral valve regurgitation, aortic stenosis). T-tubule growth was associated with larger Ca2+ transients, linked to upregulation of L-type Ca2+ channels, Na+-Ca2+ exchanger, mechanosensors and regulators of t-tubule structure. By contrast, marked elevation of cardiac load in rodents and patients advanced the heart down the declining limb of the t-tubule-load relationship. This bell-shaped relationship was lost in the absence of electrical stimulation, indicating a key role of systolic stress in controlling t-tubule plasticity. In conclusion, modest augmentation of workload promotes compensatory increases in t-tubule density and Ca2+ cycling, whereas this adaptation is reversed in overloaded hearts during heart failure progression. KEY POINTS: Excised papillary muscle experiments demonstrated a bell-shaped relationship between cardiomyocyte t-tubule density and workload (preload or afterload), which was only present when muscles were electrically stimulated. The in vivo heart at baseline is positioned on the rising phase of this curve because moderate increases in preload (mice with brief aortic shunt surgery, patients with mitral valve regurgitation) resulted in t-tubule growth. Moderate increases in afterload (mice and patients with mild aortic banding/stenosis) similarly increased t-tubule density. T-tubule proliferation was associated with larger Ca2+ transients, with upregulation of the L-type Ca2+ channel, Na+-Ca2+ exchanger, mechanosensors and regulators of t-tubule structure. By contrast, marked elevation of cardiac load in rodents and patients placed the heart on the declining phase of the t-tubule-load relationship, promoting heart failure progression. The dependence of t-tubule structure on preload and afterload thus enables both compensatory and maladaptive remodelling, in rodents and humans.

2.
Circ Res ; 133(3): 255-270, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37401464

RESUMO

BACKGROUND: Increasing cardiomyocyte contraction during myocardial stretch serves as the basis for the Frank-Starling mechanism in the heart. However, it remains unclear how this phenomenon occurs regionally within cardiomyocytes, at the level of individual sarcomeres. We investigated sarcomere contractile synchrony and how intersarcomere dynamics contribute to increasing contractility during cell lengthening. METHODS: Sarcomere strain and Ca2+ were simultaneously recorded in isolated left ventricular cardiomyocytes during 1 Hz field stimulation at 37 °C, at resting length and following stepwise stretch. RESULTS: We observed that in unstretched rat cardiomyocytes, differential sarcomere deformation occurred during each beat. Specifically, while most sarcomeres shortened during the stimulus, ≈10% to 20% of sarcomeres were stretched or remained stationary. This nonuniform strain was not traced to regional Ca2+ disparities but rather shorter resting lengths and lower force production in systolically stretched sarcomeres. Lengthening of the cell recruited additional shortening sarcomeres, which increased contractile efficiency as less negative, wasted work was performed by stretched sarcomeres. Given the known role of titin in setting sarcomere dimensions, we next hypothesized that modulating titin expression would alter intersarcomere dynamics. Indeed, in cardiomyocytes from mice with titin haploinsufficiency, we observed greater variability in resting sarcomere length, lower recruitment of shortening sarcomeres, and impaired work performance during cell lengthening. CONCLUSIONS: Graded sarcomere recruitment directs cardiomyocyte work performance, and harmonization of sarcomere strain increases contractility during cell stretch. By setting sarcomere dimensions, titin controls sarcomere recruitment, and its lowered expression in haploinsufficiency mutations impairs cardiomyocyte contractility.


Assuntos
Miócitos Cardíacos , Sarcômeros , Ratos , Camundongos , Animais , Sarcômeros/metabolismo , Conectina/genética , Conectina/metabolismo , Miócitos Cardíacos/metabolismo , Contração Miocárdica/fisiologia , Miocárdio/metabolismo
3.
Philos Trans R Soc Lond B Biol Sci ; 377(1864): 20210468, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36189810

RESUMO

During cardiac disease, t-tubules and dyads are remodelled and disrupted within cardiomyocytes, thereby reducing cardiac performance. Given the pathological implications of such dyadic remodelling, robust and versatile tools for characterizing these sub-cellular structures are needed. While analysis programs for continuous and regular structures such as rodent ventricular t-tubules are available, at least in two dimensions, these approaches are less appropriate for assessment of more irregular structures, such as dyadic proteins and non-rodent t-tubules. Here, we demonstrate versatile, easy-to-use software that performs such analyses. This software, called Tubulator, enables automated analysis of t-tubules and dyadic proteins alike, in both tissue sections and isolated myocytes. The program measures densities of subcellular structures and proteins in individual cells, quantifies their distribution into transversely and longitudinally oriented elements, and supports detailed co-localization analyses. Importantly, Tubulator provides tools for three-dimensional assessment and rendering of image stacks, extending examinations from the single plane to the whole-myocyte level. To provide insight into the consequences of dyadic organization for synchrony of Ca2+ handling, Tubulator also creates 'distance maps', by calculating the distance from all cytosolic positions to the nearest t-tubule and/or dyad. In conclusion, this freely accessible program provides detailed automated analysis of the three-dimensional nature of dyadic and t-tubular structures. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.


Assuntos
Cálcio , Miócitos Cardíacos , Cálcio/metabolismo , Sinalização do Cálcio , Citosol/metabolismo , Miócitos Cardíacos/metabolismo
4.
Scand J Trauma Resusc Emerg Med ; 26(1): 31, 2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29690910

RESUMO

BACKGROUND: Experimental active compression-decompression (ACD) CPR is associated with increased haemodynamic outcomes compared to standard mechanical chest compressions. Since no clinically available mechanical chest compression device is capable of ACD-CPR, we modified the LUCAS 2 (Physio-Control, Lund, Sweden) to deliver ACD-CPR, hypothesising it would improve haemodynamic outcomes compared with standard LUCAS CPR on pigs with cardiac arrest. METHODS: The modified LUCAS delivering 5 cm compressions with or without 2 cm active decompression above anatomical chest level was studied in a randomized crossover design on 19 Norwegian domestic pigs. VF was electrically induced and untreated for 2 min. Each pig received ACD-CPR and standard mechanical CPR in three 180-s. phases. We measured aortic, right atrial, coronary perfusion, intracranial and oesophageal pressure, cerebral and carotid blood flow and cardiac output. Two-sided paired samples t-test was used for continuous parametric data and Wilcoxon test for non-parametric data. P < 0.05 was considered significant. RESULTS: Due to injuries/device failure, the experimental protocol was completed in nine of 19 pigs. Cardiac output (l/min, median, (25, 75-percentiles): 1.5 (1.1, 1.7) vs. 1.1 (0.8, 1.5), p < 0.01), cerebral blood flow (AU, 297 vs. 253, mean difference: 44, 95% CI; 14-74, p = 0.01), and carotid blood flow (l/min, median, (25, 75-percentiles): 97 (70, 106) vs. 83 (57, 94), p < 0.01) were higher during ACD-CPR compared to standard mechanical CPR. Coronary perfusion pressure (CPP) trended towards higher in end decompression phase. CONCLUSION: Cardiac output and brain blood flow improved with mechanical ACD-CPR and CPP trended towards higher during end-diastole compared to standard LUCAS CPR.


Assuntos
Reanimação Cardiopulmonar/métodos , Parada Cardíaca/fisiopatologia , Hemodinâmica/fisiologia , Animais , Descompressão , Modelos Animais de Doenças , Feminino , Parada Cardíaca/terapia , Masculino , Pressão , Suínos
5.
Cardiovasc Res ; 112(1): 443-51, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27226008

RESUMO

AIMS: Invaginations of the cellular membrane called t-tubules are essential for maintaining efficient excitation-contraction coupling in ventricular cardiomyocytes. Disruption of t-tubule structure during heart failure has been linked to dyssynchronous, slowed Ca(2+) release and reduced power of the heartbeat. The underlying mechanism is, however, unknown. We presently investigated whether elevated ventricular wall stress triggers remodelling of t-tubule structure and function. METHODS AND RESULTS: MRI and blood pressure measurements were employed to examine regional wall stress across the left ventricle of sham-operated and failing, post-infarction rat hearts. In failing hearts, elevated left ventricular diastolic pressure and ventricular dilation resulted in markedly increased wall stress, particularly in the thin-walled region proximal to the infarct. High wall stress in this proximal zone was associated with reduced expression of the dyadic anchor junctophilin-2 and disrupted cardiomyocyte t-tubular structure. Indeed, local wall stress measurements predicted t-tubule density across sham and failing hearts. Elevated wall stress and disrupted cardiomyocyte structure in the proximal zone were also associated with desynchronized Ca(2+) release in cardiomyocytes and markedly reduced local contractility in vivo. A causative role of wall stress in promoting t-tubule remodelling was established by applying stretch to papillary muscles ex vivo under culture conditions. Loads comparable to wall stress levels observed in vivo in the proximal zone reduced expression of junctophilin-2 and promoted t-tubule loss. CONCLUSION: Elevated wall stress reduces junctophilin-2 expression and disrupts t-tubule integrity, Ca(2+) release, and contractile function. These findings provide new insight into the role of wall stress in promoting heart failure progression.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/metabolismo , Contração Miocárdica , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Função Ventricular Esquerda , Animais , Fenômenos Biomecânicos , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Regulação para Baixo , Acoplamento Excitação-Contração , Insuficiência Cardíaca/parasitologia , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Homeostase , Masculino , Proteínas de Membrana/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/patologia , Ratos Wistar , Estresse Mecânico , Fatores de Tempo , Remodelação Ventricular
6.
Am J Physiol Heart Circ Physiol ; 301(6): H2334-43, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21984549

RESUMO

During left bundle branch block (LBBB), electromechanical delay (EMD), defined as time from regional electrical activation (REA) to onset shortening, is prolonged in the late-activated left ventricular lateral wall compared with the septum. This leads to greater mechanical relative to electrical dyssynchrony. The aim of this study was to determine the mechanism of the prolonged EMD. We investigated this phenomenon in an experimental LBBB dog model (n = 7), in patients (n = 9) with biventricular pacing devices, in an in vitro papillary muscle study (n = 6), and a mathematical simulation model. Pressures, myocardial deformation, and REA were assessed. In the dogs, there was a greater mechanical than electrical delay (82 ± 12 vs. 54 ± 8 ms, P = 0.002) due to prolonged EMD in the lateral wall vs. septum (39 ± 8 vs.11 ± 9 ms, P = 0.002). The prolonged EMD in later activated myocardium could not be explained by increased excitation-contraction coupling time or increased pressure at the time of REA but was strongly related to dP/dt at the time of REA (r = 0.88). Results in humans were consistent with experimental findings. The papillary muscle study and mathematical model showed that EMD was prolonged at higher dP/dt because it took longer for the segment to generate active force at a rate superior to the load rise, which is a requirement for shortening. We conclude that, during LBBB, prolonged EMD in late-activated myocardium is caused by a higher dP/dt at the time of activation, resulting in aggravated mechanical relative to electrical dyssynchrony. These findings suggest that LV contractility may modify mechanical dyssynchrony.


Assuntos
Bloqueio de Ramo/fisiopatologia , Sistema de Condução Cardíaco/fisiopatologia , Músculos Papilares/fisiopatologia , Idoso , Animais , Bloqueio de Ramo/diagnóstico , Bloqueio de Ramo/terapia , Terapia de Ressincronização Cardíaca , Simulação por Computador , Modelos Animais de Doenças , Cães , Eletrocardiografia , Eletromiografia , Técnicas Eletrofisiológicas Cardíacas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Cardiovasculares , Contração Miocárdica , Proibitinas , Coelhos , Fatores de Tempo , Função Ventricular Esquerda , Pressão Ventricular
7.
Resuscitation ; 81(4): 488-92, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20122780

RESUMO

AIM OF THE STUDY: Piston based mechanical chest compression devices deliver compressions and decompressions in an accelerated pattern, resulting in superior haemodynamics compared to manual compression in animal studies. The present animal study compares haemodynamics during two different hybrid compression patterns to a standard compression pattern resembling that of modern mechanical chest compression devices. METHOD: In 12 anaesthetized domestic pigs in ventricular fibrillation, coronary perfusion pressures (CPP) and cerebral cortical blood flow (CCBF) was measured, and transesophageal echocardiography (TEE) was performed. Two hybrid compression patterns, one with accelerated trapezoid compression and slower sinusoid decompression (TrS), and one with slower sinusoid compression and accelerated trapezoid decompression (STr), were tested against a standard accelerated trapezoid compression-decompression pattern (TrTr) in a cross-over randomised setup. RESULTS: There were 7% (1, 14, p=0.046) lower CCBF and 3 mmHg (1, 5, p=0.017) lower CPP with the TrS compared to TrTr pattern. No significant difference between STr and TrTr pattern in either CCBF, 6% (-3, 15, p=0.176) or CPP, 0 mmHg (-2, 3, p=0.703) was present. Our TEE recordings were insufficient for haemodynamic comparison between the different compression-decompression patterns. Despite standardized sternal piston position and placement of the pigs, TEE revealed varying degree of asymmetrical heart chamber compression in the animals. CONCLUSION: Both cardiac and cerebral perfusion benefited from accelerated decompression, while accelerated compression did not improve haemodynamics. The evolution of mechanical CPR is dependent on further research on mechanisms generating forward blood flow during external chest compressions.


Assuntos
Reanimação Cardiopulmonar/métodos , Circulação Cerebrovascular/fisiologia , Circulação Coronária/fisiologia , Parada Cardíaca/terapia , Animais , Reanimação Cardiopulmonar/instrumentação , Ecocardiografia Transesofagiana , Feminino , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...