Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 16(8): e1008707, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32780778

RESUMO

Proteus mirabilis, a Gram-negative uropathogen, is a major causative agent in catheter-associated urinary tract infections (CAUTI). Mannose-resistant Proteus-like fimbriae (MR/P) are crucially important for P. mirabilis infectivity and are required for biofilm formation and auto-aggregation, as well as for bladder and kidney colonization. Here, the X-ray crystal structure of the MR/P tip adhesin, MrpH, is reported. The structure has a fold not previously described and contains a transition metal center with Zn2+ coordinated by three conserved histidine residues and a ligand. Using biofilm assays, chelation, metal complementation, and site-directed mutagenesis of the three histidines, we show that an intact metal binding site occupied by zinc is essential for MR/P fimbria-mediated biofilm formation, and furthermore, that P. mirabilis biofilm formation is reversible in a zinc-dependent manner. Zinc is also required for MR/P-dependent agglutination of erythrocytes, and mutation of the metal binding site renders P. mirabilis unfit in a mouse model of UTI. The studies presented here provide important clues as to the mechanism of MR/P-mediated biofilm formation and serve as a starting point for identifying the physiological MR/P fimbrial receptor.


Assuntos
Adesinas Bacterianas/metabolismo , Biofilmes , Proteínas de Fímbrias/metabolismo , Proteus mirabilis/metabolismo , Infecções Urinárias/microbiologia , Zinco/metabolismo , Adesinas Bacterianas/química , Adesinas Bacterianas/genética , Sequência de Aminoácidos , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Humanos , Infecções por Proteus/metabolismo , Infecções por Proteus/microbiologia , Proteus mirabilis/química , Proteus mirabilis/genética , Alinhamento de Sequência , Infecções Urinárias/metabolismo , Zinco/química
2.
Trends Microbiol ; 25(4): 304-315, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28017513

RESUMO

Proteus mirabilis is a model organism for urease-producing uropathogens. These diverse bacteria cause infection stones in the urinary tract and form crystalline biofilms on indwelling urinary catheters, frequently leading to polymicrobial infection. Recent work has elucidated how P. mirabilis causes all of these disease states. Particularly exciting is the discovery that this bacterium forms large clusters in the bladder lumen that are sites for stone formation. These clusters, and other steps of infection, require two virulence factors in particular: urease and MR/P fimbriae. Highlighting the importance of MR/P fimbriae is the cotranscribed regulator, MrpJ, which globally controls virulence. Overall, P. mirabilis exhibits an extraordinary lifestyle, and further probing will answer exciting basic microbiological and clinically relevant questions.


Assuntos
Infecções Relacionadas a Cateter/patologia , Fímbrias Bacterianas/metabolismo , Cálculos Renais/microbiologia , Infecções por Proteus/patologia , Proteus mirabilis/patogenicidade , Urease/biossíntese , Infecções Urinárias/patologia , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Infecções Relacionadas a Cateter/microbiologia , Humanos , Cálculos Renais/patologia , Infecções por Proteus/microbiologia , Proteus mirabilis/crescimento & desenvolvimento , Proteínas Repressoras/metabolismo , Bexiga Urinária/microbiologia , Infecções Urinárias/microbiologia
3.
Proc Natl Acad Sci U S A ; 113(16): 4494-9, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27044107

RESUMO

The catheter-associated uropathogenProteus mirabilisfrequently causes urinary stones, but little has been known about the initial stages of bladder colonization and stone formation. We found thatP. mirabilisrapidly invades the bladder urothelium, but generally fails to establish an intracellular niche. Instead, it forms extracellular clusters in the bladder lumen, which form foci of mineral deposition consistent with development of urinary stones. These clusters elicit a robust neutrophil response, and we present evidence of neutrophil extracellular trap generation during experimental urinary tract infection. We identified two virulence factors required for cluster development: urease, which is required for urolithiasis, and mannose-resistantProteus-like fimbriae. The extracellular cluster formation byP. mirabilisstands in direct contrast to uropathogenicEscherichia coli, which readily formed intracellular bacterial communities but not luminal clusters or urinary stones. We propose that extracellular clusters are a key mechanism ofP. mirabilissurvival and virulence in the bladder.


Assuntos
Proteínas de Bactérias , Fímbrias Bacterianas , Infecções por Proteus , Proteus mirabilis , Urease , Cálculos da Bexiga Urinária , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Modelos Animais de Doenças , Feminino , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Camundongos , Camundongos Endogâmicos CBA , Infecções por Proteus/genética , Infecções por Proteus/metabolismo , Infecções por Proteus/patologia , Proteus mirabilis/genética , Proteus mirabilis/metabolismo , Proteus mirabilis/patogenicidade , Urease/genética , Urease/metabolismo , Bexiga Urinária/microbiologia , Bexiga Urinária/patologia , Cálculos da Bexiga Urinária/genética , Cálculos da Bexiga Urinária/metabolismo , Cálculos da Bexiga Urinária/microbiologia , Cálculos da Bexiga Urinária/patologia , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/metabolismo , Escherichia coli Uropatogênica/patogenicidade
4.
Mol Microbiol ; 96(2): 233-48, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25586643

RESUMO

Cells acclimate to fluctuating environments by utilizing sensory circuits. One common sensory pathway used by bacteria is two-component signaling (TCS), composed of an environmental sensor [the sensor kinase (SK)] and a cognate, intracellular effector [the response regulator (RR)]. The squid symbiont Vibrio fischeri uses an elaborate TCS phosphorelay containing a hybrid SK, RscS, and two RRs, SypE and SypG, to control biofilm formation and host colonization. Here, we found that another hybrid SK, SypF, was essential for biofilms by functioning downstream of RscS to directly control SypE and SypG. Surprisingly, although wild-type SypF functioned as an SK in vitro, this activity was dispensable for colonization. In fact, only a single non-enzymatic domain within SypF, the HPt domain, was critical in vivo. Remarkably, this domain within SypF interacted with RscS to permit a bypass of RscS's own HPt domain and SypF's enzymatic function. This represents the first in vivo example of a functional SK that exploits the enzymatic activity of another SK, an adaptation that demonstrates the elegant plasticity in the arrangement of TCS regulators.


Assuntos
Infecções por Aliivibrio/veterinária , Aliivibrio fischeri/enzimologia , Aliivibrio fischeri/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Biofilmes , Decapodiformes/microbiologia , Proteínas Quinases/metabolismo , Infecções por Aliivibrio/microbiologia , Aliivibrio fischeri/genética , Aliivibrio fischeri/fisiologia , Animais , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Proteínas Quinases/genética , Transdução de Sinais , Simbiose
5.
Front Microbiol ; 4: 356, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24348467

RESUMO

Bacteria successfully colonize distinct niches because they can sense and appropriately respond to a variety of environmental signals. Of particular interest is how a bacterium negotiates the multiple, complex environments posed during successful infection of an animal host. One tractable model system to study how a bacterium manages a host's multiple environments is the symbiotic relationship between the marine bacterium, Vibrio fischeri, and its squid host, Euprymna scolopes. V. fischeri encounters many different host surroundings ranging from initial contact with the squid to ultimate colonization of a specialized organ known as the light organ. For example, upon recognition of the squid, V. fischeri forms a biofilm aggregate outside the light organ that is required for efficient colonization. The bacteria then disperse from this biofilm to enter the organ, where they are exposed to nitric oxide, a molecule that can act as both a signal and an antimicrobial. After successfully managing this potentially hostile environment, V. fischeri cells finally establish their niche in the deep crypts of the light organ where the bacteria bioluminesce in a pheromone-dependent fashion, a phenotype that E. scolopes utilizes for anti-predation purposes. The mechanism by which V. fischeri manages these environments to outcompete all other bacterial species for colonization of E. scolopes is an important and intriguing question that will permit valuable insights into how a bacterium successfully associates with a host. This review focuses on specific molecular pathways that allow V. fischeri to establish this exquisite bacteria-host interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...