Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 6774, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35474082

RESUMO

Citrate (Cit) and Deferoxamine B (DFOB) are two important organic ligands coexisting in soils with distinct different affinities for metal ions. It has been theorized that siderophores and weak organic ligands play a synergistic role during the transport of micronutrients in the rhizosphere, but the geochemical controls of this process remain unknown. Here we test the hypothesis that gradients in pH and ion strength regulate and enable the cooperation. To this end, first we use potentiometric titrations to identify the dominant Zn(II)-Cit and Zn(II)-DFOB complexes and to determine their ionic strength dependent stability constants between 0 and 1 mol dm-3. We parametrise the Extended Debye-Hückel (EDH) equation and determine accurate intrinsic association constants (logß0) for the formation of the complexes present. The speciation model developed confirms the presence of [Zn(Cit)]-, [Zn(HCit)], [Zn2(Cit)2(OH)2]4-, and [Zn(Cit)2]4-, with [Zn(Cit)]- and [Zn2(Cit)2(OH)2]4- the dominant species in the pH range relevant to rhizosphere. We propose the existence of a new [Zn(Cit)(OH)3]4- complex above pH 10. We also verify the existence of two hexadentate Zn(II)-DFOB species, i.e., [Zn(DFOB)]- and [Zn(HDFOB)], and of one tetradentate species [Zn(H2DFOB)]+. Second, we identify the pH and ionic strength dependent ligand exchange points (LEP) of Zn with citrate and DFOB and the stability windows for Zn(II)-Cit and Zn(II)-DFOB complexes in NaCl and rice soil solutions. We find that the LEPs fall within the pH and ionic strength gradients expected in rhizospheres and that the stability windows for Zn(II)-citrate and Zn(II)-DFOB, i.e., low and high affinity ligands, can be distinctly set off. This suggests that pH and ion strength gradients allow for Zn(II) complexes with citrate and DFOB to dominate in different parts of the rhizosphere and this explains why mixtures of low and high affinity ligands increase leaching of micronutrients in soils. Speciation models of soil solutions using newly determined association constants demonstrate that the presence of dissolved organic matter and inorganic ligands (i.e., bicarbonate, phosphate, sulphate, or chlorides) do neither affect the position of the LEP nor the width of the stability windows significantly. In conclusion, we demonstrate that cooperative and synergistic ligand interaction between low and high affinity ligands is a valid mechanism for controlling zinc transport in the rhizosphere and possibly in other environmental reservoirs such as in the phycosphere. Multiple production of weak and strong ligands is therefore a valid strategy of plants and other soil organisms to improve access to micronutrients.


Assuntos
Rizosfera , Sideróforos , Citratos , Ácido Cítrico/química , Concentração de Íons de Hidrogênio , Ligantes , Micronutrientes , Concentração Osmolar , Solo/química , Zinco/química
2.
Sci Rep ; 11(1): 16704, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408172

RESUMO

Bacteria, fungi and grasses use siderophores to access micronutrients. Hence, the metal binding efficiency of siderophores is directly related to ecosystem productivity. Salinization of natural solutions, linked to climate change induced sea level rise and changing precipitation patterns, is a serious ecological threat. In this study, we investigate the impact of salinization on the zinc(II) binding efficiency of the major siderophore functional groups, namely the catecholate (for bacterial siderophores), α-hydroxycarboxylate (for plant siderophores; phytosiderophores) and hydroxamate (for fungal siderophores) bidentate motifs. Our analysis suggests that the order of increasing susceptibility of siderophore classes to salinity in terms of their zinc(II) chelating ability is: hydroxamate < catecholate < α-hydroxycarboxylate. Based on this ordering, we predict that plant productivity is more sensitive to salinization than either bacterial or fungal productivity. Finally, we show that previously observed increases in phytosiderophore release by barley plants grown under salt stress in a medium without initial micronutrient deficiencies, are in line with the reduced zinc(II) binding efficiency of the α-hydroxycarboxylate ligand and hence important for the salinity tolerance of whole-plant zinc(II) status.

3.
J Exp Bot ; 72(5): 1517-1526, 2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33332561

RESUMO

Micronutrient deficiencies threaten global food production. Attempts to biofortify crops rely on a clear understanding of micronutrient uptake processes. Zinc deficiency in rice is a serious problem. One of the pathways proposed for the transfer of zinc from soils into rice plants involves deoxymugineic acid (DMA), a phytosiderophore. The idea that phytosiderophores play a wider role in nutrition of Poaceae beyond iron is well established. However, key mechanistic details of the DMA-assisted zinc uptake pathway in rice remain uncertain. In particular, questions surround the form in which zinc from DMA is taken up [i.e. as free aqueous Zn(II) or as Zn(II)-DMA complexes] and the role of competitive behaviour of other metals with DMA. We propose that an accurate description of the effect of changes in pH, ligand concentration, and ionic strength on the stability of Zn(II)-DMA complexes in the presence of other metals in the microenvironment around root cells is critical for understanding the modus operandi of DMA during zinc uptake. To that end, we reveal the importance of geochemical changes in the microenvironment around root cells and demonstrate the effect of inaccurate stability constants on speciation models.


Assuntos
Oryza , Transporte Biológico , Ferro , Solo , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA