Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 117: 330-346, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38309640

RESUMO

Nutrient composition in obesogenic diets may influence the severity of disorders associated with obesity such as insulin-resistance and chronic inflammation. Here we hypothesized that obesogenic diets rich in fat and varying in fatty acid composition, particularly in omega 6 (ω6) to omega 3 (ω3) ratio, have various effects on energy metabolism, neuroinflammation and behavior. Mice were fed either a control diet or a high fat diet (HFD) containing either low (LO), medium (ME) or high (HI) ω6/ω3 ratio. Mice from the HFD-LO group consumed less calories and exhibited less body weight gain compared to other HFD groups. Both HFD-ME and HFD-HI impaired glucose metabolism while HFD-LO partly prevented insulin intolerance and was associated with normal leptin levels despite higher subcutaneous and perigonadal adiposity. Only HFD-HI increased anxiety and impaired spatial memory, together with increased inflammation in the hypothalamus and hippocampus. Our results show that impaired glucose metabolism and neuroinflammation are uncoupled, and support that diets with a high ω6/ω3 ratio are associated with neuroinflammation and the behavioral deterioration coupled with the consumption of diets rich in fat.


Assuntos
Insulinas , Doenças Neuroinflamatórias , Animais , Camundongos , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Inflamação , Glucose
2.
Nat Biotechnol ; 41(12): 1765-1775, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37156914

RESUMO

Organoids generated from human pluripotent stem cells provide experimental systems to study development and disease, but quantitative measurements across different spatial scales and molecular modalities are lacking. In this study, we generated multiplexed protein maps over a retinal organoid time course and primary adult human retinal tissue. We developed a toolkit to visualize progenitor and neuron location, the spatial arrangements of extracellular and subcellular components and global patterning in each organoid and primary tissue. In addition, we generated a single-cell transcriptome and chromatin accessibility timecourse dataset and inferred a gene regulatory network underlying organoid development. We integrated genomic data with spatially segmented nuclei into a multimodal atlas to explore organoid patterning and retinal ganglion cell (RGC) spatial neighborhoods, highlighting pathways involved in RGC cell death and showing that mosaic genetic perturbations in retinal organoids provide insight into cell fate regulation.


Assuntos
Células-Tronco Pluripotentes , Retina , Humanos , Células Ganglionares da Retina/metabolismo , Transcriptoma/genética , Organoides , Diferenciação Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...