Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Infect ; 80(5): 527-535, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31981638

RESUMO

OBJECTIVES: Bedaquiline is an effective drug used to treat MDR and XDR tuberculosis, providing high cure rates in complex therapy. Mutations in the mmpR (rv0678) and atpE genes are associated with reduced susceptibility to bedaquiline and have been identified in both in vitro selected strains and clinical isolates. However, the phenotypic criteria used to detect bedaquiline resistance have yet to be established due to the collection of few clinical isolates from patients receiving bedaquiline-containing treatment regimens. METHODS: One hundred eighty-two clinical isolates from 74 patients receiving bedaquiline and 163 isolates from 107 patients not exposed to bedaquiline were analysed. The bedaquiline MICs were tested using serial dilutions on 7H11 agar plates and the Bactec MGIT 960 system. The mmpR and atpE genes were sequenced by Sanger sequencing. RESULTS: The 7H11 agar method allowed for rapid discrimination between mutated and wild-type isolates and between exposed and non-exposed isolates. Seventy-three percent of bedaquiline-exposed isolates, as well as 91% of isolates with mutations, had an elevated bedaquiline MIC (≥ 0.12 mg/L on 7H11 media) compared to the reference isolates (89% had an MIC ≤ 0.03 mg/L). Previously reported in vitro-selected mutants (E61D and A63P) and novel AtpE substitutions (G25S and D28G) were observed in the clinical isolates. Substitutions in codon 63 of AtpE were likely associated with a higher bedaquiline MIC. Five new cases of pre-existing reduced susceptibility to bedaquiline, accompanied by mmpR mutations in most isolates, without a history of bedaquiline treatment were identified. CONCLUSIONS: Bedaquiline treatment leads to an elevated bedaquiline MIC and the acquisition of mmpR and atpE gene mutations in tuberculosis strains. The standardisation of bedaquiline phenotypic susceptibility testing is urgently needed based on observed discrepancies between our study and previous studies and differences in solid and liquid media MIC determinations.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Diarilquinolinas/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/genética , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
2.
Infect Genet Evol ; 72: 141-146, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30593924

RESUMO

Multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis are global challenges due to the limited number of effective drugs for treatment. Treatment with less than 4-5 effective drugs might lead to the further emergence of drug resistance and poor clinical outcomes. For better prediction of treatment outcomes, we compared drug-resistance profiles of consecutive clinical MDR Mycobacterium tuberculosis isolates from high- and low-burden settings. This was a retrospective cohort study. We analysed 225 and 229 MDR isolates from Moscow (Russia) and Taiwan, respectively, obtained between 2014 and 2015. Drug susceptibility testing was performed by the Bactec MGIT 960 automated system and the agar proportion method. Detection of resistance-associated mutations in the M. tuberculosis genome was carried out by an array and/or sequencing of selected loci. The principal differences between resistance profiles of MDR isolates in the two countries were the percentages of pre-XDR (40.9% vs. 14.8%) and XDR (34.7% vs. 1.7%) isolates, both of which were significantly higher in Moscow isolates. Forty-eight (33%) of 147 MDR and pre-XDR Russian isolates fall into a group with less than four effective drugs, which accounts for 40% (N = 120) of these isolates. The other 60% in this group were XDR strains (N = 72). Consequently, the average number of effective anti-tuberculosis drugs for MDR-TB treatment was lower for Russian isolates (3 vs. 7). Furthermore, a notable percentage (9%) of isolates resistant to kanamycin harboured mutations in the whiB7 locus, which was not detected by molecular tests targeting common mutations in the rrs and eis loci. We found that 98.2% and 45.9% of MDR isolates from Moscow and Taiwan, respectively, were resistant to streptomycin. Molecular tests for detecting resistance to drugs other than rifampicin, isoniazid, fluoroquinolones, and second-line injectable drugs are needed for individualized therapy. The conventional MDR treatment schemes most probably fail in these cases due to the limited number of effective drugs.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/epidemiologia , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Genes MDR/genética , Genoma Bacteriano/genética , Humanos , Mutação , Estudos Retrospectivos , Federação Russa/epidemiologia , Taiwan/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
3.
J Antimicrob Chemother ; 72(7): 1901-1906, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28387862

RESUMO

Objectives: To study the isolates with acquired resistance to bedaquiline and linezolid that were obtained from patients enrolled in a clinical study of a novel therapy regimen for drug-resistant TB in Moscow, Russia. Methods: Linezolid resistance was detected using MGIT 960 with a critical concentration of 1 mg/L. The MIC of bedaquiline was determined using the proportion method. To identify genetic determinants of resistance, sequencing of the mmpR ( Rv0678 ), atpE , atpC , pepQ , Rv1979c , rrl , rplC and rplD loci was performed. Results: A total of 85 isolates from 27 patients with acquired resistance to linezolid and reduced susceptibility to bedaquiline (MIC ≥0.06 mg/L) were tested. Most mutations associated with a high MIC of bedaquiline were found in the mmpR gene. We identified for the first time two patients whose clinical isolates had substitutions D28N and A63V in AtpE, which had previously been found only in in vitro -selected strains. Several patients had isolates with elevated MICs of bedaquiline prior to treatment; four of them also bore mutations in mmpR , indicating the presence of some hidden factors in bedaquiline resistance acquisition. The C154R substitution in ribosomal protein L3 was the most frequent in the linezolid-resistant strains. Mutations in the 23S rRNA gene (g2294a and g2814t) associated with linezolid resistance were also found in two isolates. Heteroresistance was identified in ∼40% of samples, which reflects the complex nature of resistance acquisition. Conclusions: The introduction of novel drugs into treatment must be accompanied by continuous phenotypic susceptibility testing and the analysis of genetic determinants of resistance.


Assuntos
Antituberculosos/farmacologia , Diarilquinolinas/farmacologia , Linezolida/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Acetamidas/uso terapêutico , Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Testes de Sensibilidade Microbiana , Moscou/epidemiologia , Mutação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Oxazolidinonas/uso terapêutico , Estudos Prospectivos , Proteína Ribossômica L3 , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia
4.
J Med Microbiol ; 62(Pt 1): 108-113, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23019190

RESUMO

The purpose of the present study was to analyse mutations in the gyrA and gyrB genes of Mycobacterium tuberculosis and define the possible correlation between these mutations and resistance to levofloxacin (LVX), moxifloxacin (MFX) and gatifloxacin (GAT), based on their MICs. One hundred and forty-two M. tuberculosis clinical isolates were collected from pulmonary tuberculosis patients in the Moscow region. All M. tuberculosis strains were tested for drug susceptibility to rifampicin and isoniazid using the BACTEC MGIT 960 System and to ofloxacin (OFX) using the absolute concentration method on solid Lowenstein-Jensen slants. All in all, 68 strains were selected at random (38 strains were resistant and 30 were susceptible to OFX) for further analysis using the TB-BIOCHIP-2 test system and DNA sequence analysis. The MICs of LVX, MFX and GAT for selected strains were determined using the BACTEC MGIT 960 System. Mutations in the gyrA gene were observed in 36 out of 38 (94.7 %) OFX-resistant M. tuberculosis strains. Asn538Asp and Asp500His substitutions in the gyrB gene only were found in two (5.3 %) strains. Twenty-nine out of 30 OFX-sensitive M. tuberculosis strains had no mutations in either gene. One (3.3 %) OFX-sensitive M. tuberculosis strain carried an Arg485His substitution in gyrB. The results of our investigation showed that there is no clear correlation between the type of mutation in the genes gyrA and gyrB, and the MIC levels of LVX, MFX and GAT for resistant strains. Mutations in gyrA and Asn538Asp, and Asp500His substitutions in gyrB were associated with cross-resistance of M. tuberculosis to fluoroquinolones. The substitution Arg485His in gyrB does not confer resistance to LVX, MFX and GAT in M. tuberculosis.


Assuntos
Antituberculosos/farmacologia , DNA Girase/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Compostos Aza/farmacologia , DNA Girase/metabolismo , Farmacorresistência Bacteriana/genética , Fluoroquinolonas/farmacologia , Gatifloxacina , Regulação Bacteriana da Expressão Gênica , Humanos , Levofloxacino , Testes de Sensibilidade Microbiana , Moxifloxacina , Mutação , Ofloxacino/farmacologia , Quinolinas/farmacologia , Federação Russa/epidemiologia , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA