Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(47): 52886-52893, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36395424

RESUMO

To increase catalytic efficiency, mesoporous supports have been widely applied to immobilize well-defined metal oxide clusters due to their ability to stabilize highly dispersed clusters. Herein, a redox-active heterometallic Ce12V6-oxo cluster (CeV) was first presynthesized and then incorporated into mesoporous silica, SBA-15, via a straightforward impregnation method. Scanning transmission electron microscopy (STEM) and Fourier transform infrared spectroscopy (FTIR), in concert with scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS), verified the successful introduction of the CeV cluster inside the pore of SBA-15. The 51V magic angle spinning solid-state nuclear magnetic resonance (51V MAS NMR) spectroscopy and differential pair distribution function (dPDF) analysis confirmed the structural integrity of the CeV cluster inside the SBA-15. The composite was then benchmarked for liquid-phase oxidation of 2-chloroethyl ethyl sulfide (CEES) under mild conditions and gas-phase oxidative dehydrogenation (ODH) of propane under high temperatures (up to 550 °C). The catalytic reactivity results demonstrated 8- and 14-fold increase in turnover frequency (TOF) values of the composite (CeV@10SBA-2) than the bulk CeV cluster under the same conditions for CEES oxidation and ODH, respectively. These results highlight the improved reactivity of the catalytically active CeV cluster as attributed to the higher dispersion of the discrete cluster upon immobilization within the SBA-15 support.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35834365

RESUMO

Atomically precise cerium oxo clusters offer a platform to investigate structure-property relationships that are much more complex in the ill-defined bulk material cerium dioxide. We investigated the activity of the MCe70 torus family (M = Cd, Ce, Co, Cu, Fe, Ni, and Zn), a family of discrete oxysulfate-based Ce70 rings linked by monomeric cation units, for CO oxidation. CuCe70 emerged as the best performing MCe70 catalyst among those tested, prompting our exploration of the role of the interfacial unit on catalytic activity. Temperature-programmed reduction (TPR) studies of the catalysts indicated a lower temperature reduction in CuCe70 as compared to CeCe70. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) indicated that CuCe70 exhibited a faster formation of Ce3+ and contained CO bridging sites absent in CeCe70. Isothermal CO adsorption measurements demonstrated a greater uptake of CO by CuCe70 as compared to CeCe70. The calculated energies for the formation of a single oxygen defect in the structure significantly decreased with the presence of Cu at the linkage site as opposed to Ce. This study revealed that atomic-level changes in the interfacial unit can change the reducibility, CO binding/uptake, and oxygen vacancy defect formation energetics in the MCe70 family to thus tune their catalytic activity.

3.
J Am Chem Soc ; 144(27): 12092-12101, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35786950

RESUMO

Ceria-based materials have been highly desired in photocatalytic reactions due to their redox properties and strong oxygen storage and transfer ability. Herein, we report the structures of one CeCe70 oxysulfate cluster and four MCe70 clusters (M = Cu, Ni, Co, and Fe) with the same Ce70 core. As noted, single-crystal X-ray diffraction confirmed the structures of CeCe70 and the MCe70 series, while Raman spectroscopy indicated an increase in oxygen defects upon the introduction of Cu and Fe ions. The clusters catalyzed the oxidation of 4-methoxybenzyl alcohol under ultraviolet light. CuCe70 and FeCe70 exhibited enhanced reactivity compared to CeCe70 and improved aldehyde selectivity compared to control experiments. In comparison with their homogeneous congeners, the CeCe70/MCe70 clusters altered the location of radical generation from the bulk solution to the clusters' surfaces. Mechanistic studies highlight the role of oxygen defects and specific transition metal introduction for efficient photocatalysis. The mechanistic pathway in this study provides insight into how to select or design a highly selective catalyst for photocatalysis.

4.
Phys Chem Chem Phys ; 24(14): 8129-8141, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35332353

RESUMO

In this work, we computationally explore the formation and subsequent reactivity of various iron-oxo species in the iron-triazolate framework Fe2(µ-OH)2(bbta) (H2bbta = 1H,5H-benzo(1,2-d:4,5-d')bistriazole) for the catalytic activation of strong C-H bonds. With the direct conversion of methane to methanol as the probe reaction of interest, we use density functional theory (DFT) calculations to evaluate multiple mechanistic pathways in the presence of either N2O or H2O2 oxidants. These calculations reveal that a wide range of transition metal-oxo sites - both terminal and bridging - are plausible in this family of metal-organic frameworks, making it a unique platform for comparing the electronic structure and reactivity of different proposed active site motifs. Based on the DFT calculations, we predict that Fe2(µ-OH)2(bbta) would exhibit a relatively low barrier for N2O activation and energetically favorable formation of an [Fe(O)]2+ species that is capable of oxidizing C-H bonds. In contrast, the use of H2O2 as the oxidant is predicted to yield an assortment of bridging iron-oxo sites that are less reactive. We also find that abstracting oxo ligands can exhibit a complex mixture of both positive and negative spin density, which may have broader implications for relating the degree of radical character to catalytic activity. In general, we consider the coordinatively unsaturated iron sites to be promising for oxidation catalysis, and we provide several recommendations on how to further tune the catalytic properties of this family of metal-triazolate frameworks.

5.
J Am Chem Soc ; 144(8): 3554-3563, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35179900

RESUMO

Solid supports are crucial in heterogeneous catalysis due to their profound effects on catalytic activity and selectivity. However, elucidating the specific effects arising from such supports remains challenging. We selected a series of metal-organic frameworks (MOFs) with 8-connected Zr6 nodes as supports to deposit molybdenum(VI) onto to study the effects of pore environment and topology on the resulting Mo-supported catalysts. As characterized by X-ray absorption spectroscopy (XAS) and single-crystal X-ray diffraction (SCXRD), we modulated the chemical environments of the deposited Mo species. For Mo-NU-1000, the Mo species monodentately bound to the Zr6 nodes were anchored in the microporous c-pore, but for Mo-NU-1008 they were bound in the mesopore of Mo-NU-1008. Both monodentate and bidentate modes were found in the mesopore of Mo-NU-1200. Cyclohexene epoxidation with H2O2 was probed to evaluate the support effect on catalytic activity and to unveil the resulting structure-activity relationships. SCXRD and XAS studies demonstrated the atomically precise structural differences of the Mo binding motifs over the course of cyclohexene epoxidation. No apparent structural change was observed for Mo-NU-1000, whereas the monodentate mode of Mo species in Mo-NU-1008 and the monodentate and bidentate Mo species in Mo-NU-1200 evolved to a new bidentate mode bound between two adjacent oxygen atoms from the Zr6 node. This work demonstrates the great advantage of using MOF supports for constructing heterogeneous catalysts with modulated chemical environments of an active species and elucidating structure-activity relationships in the resulting reactions.


Assuntos
Estruturas Metalorgânicas , Molibdênio , Catálise , Cicloexenos , Peróxido de Hidrogênio , Estruturas Metalorgânicas/química , Molibdênio/química , Relação Estrutura-Atividade
6.
Chem Soc Rev ; 51(3): 1045-1097, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35005751

RESUMO

A defining characteristic of nearly all catalytically functional MOFs is uniform, molecular-scale porosity. MOF pores, linkers and nodes that define them, help regulate reactant and product transport, catalyst siting, catalyst accessibility, catalyst stability, catalyst activity, co-catalyst proximity, composition of the chemical environment at and beyond the catalytic active site, chemical intermediate and transition-state conformations, thermodynamic affinity of molecular guests for MOF interior sites, framework charge and density of charge-compensating ions, pore hydrophobicity/hydrophilicity, pore and channel rigidity vs. flexibility, and other features and properties. Collectively and individually, these properties help define overall catalyst functional behaviour. This review focuses on how porous, catalyst-containing MOFs capitalize on molecular-scale confinement, containment, isolation, environment modulation, energy delivery, and mobility to accomplish desired chemical transformations with potentially superior selectivity or other efficacy, especially in comparison to catalysts in homogeneous solution environments.


Assuntos
Catálise , Íons , Conformação Molecular
7.
J Am Chem Soc ; 143(49): 21056-21065, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34873904

RESUMO

Heterometallic CeIV/M oxo clusters are underexplored yet and can benefit from synergistic properties from combining cerium and other metal cations to produce efficient redox catalysts. Herein, we designed and synthesized a series of new Ce12V6 oxo clusters with different capping ligands: Ce12V6-SO4, Ce12V6-OTs (OTs: toluenesulfonic acid), and Ce12V6-NBSA (NBSA: nitrobenzenesulfonic acid). Single crystal X-ray diffraction (SCXRD) for all three structures reveals a Ce12V6 cubane core formulated [Ce12(VO)6O24]18+ with cerium on the edges of the cube, vanadyl capping the faces, and sulfate on the corners. While infrared spectroscopy (IR), ultraviolet-visible spectroscopy (UV-vis), electrospray ionization mass spectrometry (ESI-MS), and proton nuclear magnetic resonance (1H NMR) proved the successful coordination of the organic ligands to the Ce12V6 core, liquid phase 51V NMR and small-angle X-ray scattering (SAXS) confirmed the integrity of the clusters in the organic solutions. Furthermore, functionalization of the Ce12V6 core with organic ligands both provides increased solubility in term of homogeneous application and introduces porosity to the assemblies of Ce12V6-OTs and Ce12V6-NBSA in term of heterogeneous application, thus allowing more catalytic sites to be accessible and improving reactivity as compared to the nonporous and less soluble Ce12V6-SO4. Meanwhile, the coordinated ligands also influenced the electronic environment of the catalytic sites, in turn affecting the reactivity of the cluster, which we probed by the selective oxidation of 2-chloroethyl ethyl sulfide (CEES). This work provides a strategy to make full use of the catalytic sites within a class of inorganic sulfate capped clusters via organic ligand introduction.

8.
Science ; 371(6535): 1257-1260, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33737487

RESUMO

Tandem catalysis couples multiple reactions and promises to improve chemical processing, but precise spatiotemporal control over reactive intermediates remains elusive. We used atomic layer deposition to grow In2O3 over Pt/Al2O3, and this nanostructure kinetically couples the domains through surface hydrogen atom transfer, resulting in propane dehydrogenation (PDH) to propylene by platinum, then selective hydrogen combustion by In2O3, without excessive hydrocarbon combustion. Other nanostructures, including platinum on In2O3 or platinum mixed with In2O3, favor propane combustion because they cannot organize the reactions sequentially. The net effect is rapid and stable oxidative dehydrogenation of propane at high per-pass yields exceeding the PDH equilibrium. Tandem catalysis using this nanoscale overcoating geometry is validated as an opportunity for highly selective catalytic performance in a grand challenge reaction.

9.
Inorg Chem ; 60(4): 2457-2463, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33497212

RESUMO

Heterogeneous catalysts supported on metal-organic frameworks (MOFs), which possess uniform porosity and crystallinity, have attracted significant interest for recent years due to the ease of active-site characterization via X-ray diffraction and the subsequent relation of the active site structure to the catalytic activity. We report the syntheses, structures, and oxidation catalytic activities of single-ion iron catalysts incorporated into the zirconium MOF NU-1000. Single-ion iron catalysts with different counteranions were anchored onto the Zr node through postsynthetic solvothermal deposition. Crystallographic characterization of the resulting MOFs (NU-1000-Fe-Cl and NU-1000-Fe-NO3) revealed that, while both frameworks have similar Fe coordination, the distance between Fe and the Zr6 node differs significantly between the two. The product rate profiles of the two catalysts for vapor-phase cyclohexene epoxidation demonstrate different initial rates and product formations, likely originating from the different Fe-O distances.

10.
J Chem Phys ; 152(22): 224101, 2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32534539

RESUMO

Metal-organic frameworks (MOFs) with open metal sites have been widely investigated for the selective adsorption of small molecules via redox mechanisms where charge transfer can take place between the binding site and the adsorbate of interest. Quantum-chemical screening methods based on density functional theory have emerged as a promising route to accelerate the discovery of MOFs with enhanced binding affinities toward various adsorbates. However, the success of this approach is linked to the accuracy of the underlying density functional approximations (DFAs). In this work, we compare commonly used generalized gradient approximation (GGA), GGA+U, and meta-GGA exchange-correlation functionals in modeling redox-dependent binding at open metal sites in MOFs using O2 and N2 as representative small molecules. We find that the self-interaction error inherent to the widely used Perdew, Burke, and Ernzerhof (PBE) GGA predicts metal sites that are artificially redox-active, as evidenced by their strong binding affinities, short metal-adsorbate bond distances, and large degree of charge transfer. The incorporation of metal-specific, empirical Hubbard U corrections based on the transition metal oxide literature systematically reduces the redox activity of the open metal sites, often improving agreement with experiment. Additionally, the binding behavior shifts from strong chemisorption to weaker physisorption as a function of U. The M06-L meta-GGA typically predicts binding energies between those of PBE-D3(BJ) and PBE-D3(BJ)+U when using empirically derived U values from the transition metal oxide literature. Despite the strong sensitivity of the binding affinities toward a given DFA, the GGA, GGA+U, and meta-GGA approaches often yield the same qualitative trends and structure-property relationships.

11.
Angew Chem Int Ed Engl ; 59(44): 19494-19502, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-32227416

RESUMO

Through quantum-chemical calculations, we investigate a family of metal-organic frameworks (MOFs) containing triazolate linkers, M2 X2 (BBTA) (M=metal, X=bridging anion, H2 BBTA=1H,5H-benzo(1,2-d:4,5-d')bistriazole), for their ability to form terminal metal-oxo sites and subsequently activate the C-H bond of methane. By varying the metal and bridging anion in the framework, we show how to significantly tune the reactivity of this series of MOFs. The electronic structure of the metal-oxo active site is analyzed for each combination of metal and bridging ligand, and we find that spin density localized on the oxo ligand is not an inherent requirement for low C-H activation barriers. For the Mn- and Fe-containing frameworks, a transition from ferromagnetic to antiferromagnetic coupling between the metal binding site and terminal oxo ligand during the C-H activation process can greatly reduce the kinetic barrier, a unique case of two-state reactivity without a change in the net spin multiplicity.

12.
J Am Chem Soc ; 142(9): 4317-4328, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32031371

RESUMO

Metal-organic frameworks (MOFs) with coordinatively unsaturated metal sites are appealing as adsorbent materials due to their tunable functionality and ability to selectively bind small molecules. Through the use of computational screening methods based on periodic density functional theory, we investigate O2 and N2 adsorption at the coordinatively unsaturated metal sites of several MOF families. A variety of design handles are identified that can be used to modify the redox activity of the metal centers, including changing the functionalization of the linkers (replacing oxido donors with sulfido donors), anion exchange of bridging ligands (considering µ-Br-, µ-Cl-, µ-F-, µ-SH-, or µ-OH- groups), and altering the formal oxidation state of the metal. As a result, we show that it is possible to tune the O2 affinity at the open metal sites of MOFs for applications involving the strong and/or selective binding of O2. In contrast with O2 adsorption, N2 adsorption at open metal sites is predicted to be relatively weak across the MOF dataset, with the exception of MOFs containing synthetically elusive V2+ open metal sites. As one example from the screening study, we predicted that exchanging the µ-Cl- ligands of M2Cl2(BBTA) (H2BBTA = 1H,5H-benzo(1,2-d:4,5-d')bistriazole) with µ-OH- groups would significantly enhance the strength of O2 adsorption at the open metal sites without a corresponding increase in the N2 affinity. Experimental investigation of Co2Cl2(BBTA) and Co2(OH)2(BBTA) confirms that the former exhibits weak physisorption of both N2 and O2, whereas the latter is capable of chemisorbing O2 at room temperature in a highly selective manner. The O2 chemisorption behavior is attributed to the greater electron-donating character of the µ-OH- ligands and the presence of H-bonding interactions between the µ-OH- bridging ligands and the reduced O2 adsorbate.

13.
J Am Chem Soc ; 142(1): 242-250, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31851505

RESUMO

The postmodification of metal organic frameworks (MOFs) affords exceedingly high surface area materials with precisely installed chemical features, which provide new opportunities for detailed structure-function correlation in the field of catalysis. Here, we significantly expand upon the number of vapor-phase postmodification processes reported to date through screening a library of atomic layer deposition (ALD) precursors, which span metals across the periodic table and which include ligands from four distinct precursor classes. With a large library of precursors and synthesis conditions, we discern trends in the compatibility of precursor classes for well-behaved ALD in MOFs (AIM) and identify challenges and solutions to more precise postsynthetic modification.


Assuntos
Gases/química , Estruturas Metalorgânicas/química , Catálise , Relação Estrutura-Atividade
14.
Nano Lett ; 19(11): 8103-8108, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31661285

RESUMO

Highly dispersed, supported oxides are ubiquitous solid catalysts but can be challenging to characterize with atomic precision. Here, it is shown that crystalline anatase TiO2 nanosheets (∼5 nm thick) are ideal supports for imaging highly dispersed active sites. Ta cations were deposited by several routes, and high-resolution high angle annular dark-field scanning transmission electron microscopy was used to determine the location of Ta with respect to the TiO2 lattice and quantify Ta-Ta distances. In the best case, it is shown that >80% of Ta atoms are isolated from one another, whereas other techniques are blind to this critical catalytic property or give only qualitative estimates. TiO2 nanosheets may prove to be a useful platform for other types of catalysis studies.

15.
J Comput Chem ; 40(12): 1305-1318, 2019 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-30715733

RESUMO

Metal-organic frameworks (MOFs) are a class of nanoporous materials with highly tunable structures in terms of both chemical composition and topology. Due to their tunable nature, high-throughput computational screening is a particularly appealing method to reduce the time-to-discovery of MOFs with desirable physical and chemical properties. In this work, a fully automated, high-throughput periodic density functional theory (DFT) workflow for screening promising MOF candidates was developed and benchmarked, with a specific focus on applications in catalysis. As a proof-of-concept, we use the high-throughput workflow to screen MOFs containing open metal sites (OMSs) from the Computation-Ready, Experimental MOF database for the oxidative C-H bond activation of methane. The results from the screening process suggest that, despite the strong C-H bond strength of methane, the main challenge from a screening standpoint is the identification of MOFs with OMSs that can be readily oxidized at moderate reaction conditions. © 2019 Wiley Periodicals, Inc.

16.
J Am Chem Soc ; 140(27): 8535-8543, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29909621

RESUMO

Acid-catalyzed skeletal C-C bond isomerizations are important benchmark reactions for the petrochemical industries. Among those, o-xylene isomerization/disproportionation is a probe reaction for strong Brønsted acid catalysis, and it is also sensitive to the local acid site density and pore topology. Here, we report on the use of phosphotungstic acid (PTA) encapsulated within NU-1000, a Zr-based metal-organic framework (MOF), as a catalyst for o-xylene isomerization at 523 K. Extended X-ray absorption fine structure (EXAFS), 31P NMR, N2 physisorption, and X-ray diffraction (XRD) show that the catalyst is structurally stable with time-on-stream and that WO x clusters are necessary for detectable rates, consistent with conventional catalysts for the reaction. PTA and framework stability under these aggressive conditions requires maximal loading of PTA within the NU-1000 framework; materials with lower PTA loading lost structural integrity under the reaction conditions. Initial reaction rates over the NU-1000-supported catalyst were comparable to a control WO x-ZrO2, but the NU-1000 composite material was unusually active toward the transmethylation pathway that requires two adjacent active sites in a confined pore, as created when PTA is confined in NU-1000. This work shows the promise of metal-organic framework topologies in giving access to unique reactivity, even for aggressive reactions such as hydrocarbon isomerization.

17.
ChemSusChem ; 11(7): 1163-1168, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29329485

RESUMO

The reduction of CO2 is a promising route to produce valuable chemicals or fuels and create C-neutral resource cycles. Many different approaches to CO2 reduction have been investigated, but the ability of vacuum UV (VUV) irradiation to cleave C-O bonds has remained largely unexplored for use in processes that convert CO2 into useful products. Compared with other photo-driven CO2 conversion processes, VUV-initiated CO2 reduction can achieve much greater conversion under common photochemical reaction conditions when H2 and non-reducible oxides are present. Infrared spectroscopy provides evidence for a chain reaction initiated by VUV-induced CO2 splitting, which is enhanced in the presence of H2 and silica. When the reaction is carried out in the presence of silica or alumina surfaces, CO yields are increased and CH4 is formed as the only other detected product. CH4 production is not promoted by traditional photocatalysts such as TiO2 under these conditions. Assuming improvements in lamp and reactor efficiencies with scale up, or coupling with other available CO/CO2 hydrogenation techniques, these results reveal a potential, simple strategy by which CO2 could be valorized.

18.
ACS Appl Mater Interfaces ; 9(36): 30670-30678, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28817777

RESUMO

Our work introduces a novel technique based on the magnetic response of Ce3+ and molecular oxygen adsorbed on the surface of nanoceria and ceria-based catalysts that quantifies the number and type of defects and demonstrates that this information is the missing link that finally enables predictive design of NOx catalysis in ceria-based systems. The new insights into ceria catalysis are enabled by quantifying the above for different ceria nanoparticle shapes (i.e., surface terminations) and O2 partial pressure. We used ceria nanorods, cubes, and spheres and evaluated them for catalytic reduction of NO by CO. We then demonstrated the quantitative prediction of the reactivity of nanomaterials via their magnetism in different atmospheric environments. We find that the observed enhancement of reactivity for ceria nanocubes and nanorods is not directly due to improved reactivity on those surface terminations but rather due to the increased ease of generating lattice defects in these materials. Finally, we demonstrate that the method is equally applicable to highly topical and industrially relevant ceria mixed oxides, using nanoscale alumina-supported ceria as a representative case-a most ill-defined catalyst. Because the total oxide surface is a mixture of active ceria and inactive support and ceria is not likely present as crystallographically well-defined phases, reactivity does not easily scale with surface area or a surface termination. The key parameter to design efficient NO reduction in ceria-based catalysts is knowing and controlling the surface localized excess Ce3+ ion areal density.

19.
Inorg Chem ; 55(22): 11954-11961, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27797182

RESUMO

Developing structurally well-defined, supported oxide catalysts remains a significant challenge. Here, we report the grafting of Nb(V) oxide sites onto the nodes of the Zr-based metal organic framework (MOF) NU-1000 as a stable, well-defined catalyst support. Nb(V) oxide was deposited with loadings up to 1.6 mmol/g via two postsynthetic methods: atomic layer deposition in a MOF, and solution-phase grafting in a MOF. Difference envelope density measurements indicated that the two synthetic methods resulted in different local structures of the Nb(V) ions within NU-1000. Despite their high Nb(V) loadings, which were equivalent to >60% surface coverage, nearly all Nb(V) sites of the MOF-supported catalysts were active sites for alkene epoxidation, as confirmed by phenylphosphonic acid titration. The MOF-supported catalysts were more selective than the control Nb-ZrO2 catalyst for cyclohexene epoxidation with aqueous H2O2 and were far more active on a gravimetric basis.

20.
ACS Appl Mater Interfaces ; 6(1): 289-97, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24328172

RESUMO

Macrocyclic calixarene molecules were modified with functional groups of different polarities at the upper rim and subsequently grafted to mesoporous silica supports through a single Si atom linker. The resulting materials were characterized by thermogravimetric analysis, UV-visible spectroscopy, nitrogen physisorption, and solid-state NMR spectroscopy. Materials were then used to separate acetone, n-butanol, and ethanol from dilute aqueous solution, as may be useful in the recovery of fermentation-based biofuels. For the purpose of modeling batch adsorption isotherms, the materials were considered to have one strong adsorption site per calixarene molecule and a larger number of weak adsorption sites on the silica surface and external to the calixarene cavity. The magnitude of the net free energy change of adsorption varied from approximately 15 to 20 kJ/mol and was found to decrease as upper-rim calixarene functional groups became more electron-withdrawing. Adsorption appears to be driven by weak van der Waals interactions with the calixarene cavity and, particularly for butanol, minimizing contacts with solvent water. In addition to demonstrating potentially useful new sorbents, these materials provide some of the first experimental estimates of the energy of interaction between aqueous solutes and hydrophobic calixarenes, which have previously been inaccessible because of the insolubility of most nonionic calixarene species in water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...