Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Environ Health Res ; 34(1): 625-638, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36617354

RESUMO

Water use of domestic activities was quantified by interviewing 217 people in a peri-urban community near Bandung, Indonesia. Resulting in data on domestic water demand and data needed for exposure modelling of domestic activities: drinking, cooking, brushing teeth, swimming, bathing, laundry, dishwashing, religious cleansing, washing hands and cleaning food. Average total domestic water usage was 117 l/person/day, topping the WHO guidelines for basic needs (50-100 l/person/day). This water use level is comparable with higher income countries for the same set of activities but 100% higher than water use in an Indonesian traditional rural community. The final dataset provides insight in quantity of water used for domestic activities, as well as the use-frequency, duration and water sources used. These data are scarce for Indonesia and other low-middle income countries but necessary for water demand studies and estimating risks through exposure to pathogens and emerging contaminants in human exposure modelling.


Assuntos
Abastecimento de Água , Água , Humanos , Indonésia , População Rural
2.
Environ Sci Pollut Res Int ; 30(13): 37248-37262, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36571688

RESUMO

This study aimed to investigate the origin, quantity, and composition of chromophoric dissolved organic matter (CDOM) from two urbanized watersheds (Cikapundung and Cimahi River), examine how CDOM compounds and absorbances change along the process of two different conventional WTPs (WTP Dago and Cimahi) using PARAFAC, and identify absorbance as potential surrogate parameters for CDOM compounds. Samples were collected from intake, secondary treatment, and filter outlets. PARAFAC was conducted based on two data scenarios: (1) from rainy and dry seasons in Cikapundung river and WTP Dago and (2) from the two rivers and two WTPs during rainy season. Tryptophan-like (C1A) and humic-like (C2A) compounds were identified based on scenario-1 analysis. For scenario-2, humic-like (C1B), peak-M (C2B), and tryptophan-like (C3B) were the main compounds. CDOM compound quantity is consistent with the fluorescence index (FI) and biological index (BIX) which confirmed sewage and animal manure pollution in both watersheds. The best overall removal of CDOM compound occurred in WTP Dago in rainy season. The high concentration of tryptophan-like in Cikapundung River in dry season and in Cimahi River in rainy season has worsen the WTP capability to reduce CDOM. Scenario-1 has shown that in WTP Dago, the potential surrogate parameter for C1A was A240 in rainy season (r = 0.60; p < 0.01) and A410 in dry season (r = - 0.43, p < 0.05). Based on scenario-2, for the WTP Dago in rainy season, C1B strongly correlated with A254 (r = 0.86; p < 0.01), C2B has the strongest correlation with A298 (r = 0.93; p < 0.01), and C3B correlated well with A240 (r = 0.59; p < 0.01). In WTP Cimahi, during rainy season, all compounds correlated well with all measured absorbances, with the strongest correlation with A298.


Assuntos
Matéria Orgânica Dissolvida , Purificação da Água , China , Rios/química , Triptofano , Purificação da Água/métodos
3.
Environ Sci Pollut Res Int ; 30(8): 21512-21532, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36272003

RESUMO

This study provides the first set of quantitative data on the occurrence and fate of a wide range of contaminants of emerging concerns (CECs) in Indonesia's largest wastewater treatment plant (WWTP). The WWTP employs waste stabilization ponds (WSPs) as the secondary treatment before discharging the effluent to the Citarum River. Fourteen out of twenty-two monitored CECs were detected in the wastewater influent, and seven were present in the effluent, with a total concentration of 29.8 ± 0.4 µg/L and 0.5 ± 0.0 µg/L, respectively. The occurrence of the CECs in this study was found to be well correlated with their possible use and known detection in surface waters in Indonesia. Caffeine (CAF) at 12.2 ± 0.1 µg/L, acetaminophen (ACT) at 9.1 ± 0.1 µg/L, N,N-diethyl-m-toluamide (DEET) at 5.0 ± 0.1 µg/L, ibuprofen (IBU) at 2.3 ± 0.0 µg/L, and triclosan (TCS) at 470 ± 64 ng/L were discovered as the five most prevalent CECs, followed by bisphenol A (BPA), trimethoprim (TMP), Tris(2-chloroethyl) phosphate (TCEP), sulfamethazine (SMZ), carbamazepine (CBZ), fluoxetine (FLX), benzotriazole (BTA), sulfamethoxazole (SMX), and metformin (METF). Biodegradable CECs (SMX, SMZ, ACT, IBU, TCS, BPA, CAF, DEET, and TMP) were efficiently removed (83-100%) by the WSP. In contrast, recalcitrant CECs achieved poor removal efficiencies (e.g., FLX at 24%), and for others, treatment processes even resulted in elevated concentrations in the effluent (CBZ by 85%, TCEP by 149%, and BTA by 92%). The CECs' influent concentrations were determined to pose a moderate aquatic cumulative risk, while no such risk was associated with their effluent concentrations. The study demonstrates the importance of conventional WWTPs in reducing the concentrations of CECs to minimize their aquatic contamination risk. The findings are relevant for countries, such as Indonesia, with limited resources for advanced centralized wastewater treatments, and which are exploring the efficacy of centralized WSP against the existing decentralized treatments.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Indonésia , DEET , Purificação da Água/métodos
5.
Mar Pollut Bull ; 182: 114023, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35973243

RESUMO

Plastic pollution in the ocean primarily originates from the land-derived mismanaged plastic waste that is transported by rivers. This study aimed to estimate the plastic litter generation in the surface water in Jakarta and Indonesia. A field survey was conducted at six riverine sampling points (upstream to downstream) and three holding facilities of the litter in Jakarta during the rainy season. The Jakarta Open Data database was used to estimate the tonnage of plastic litter. By mass, plastic comprised approximately 74 % of the anthropogenic litter in rivers and 87 % in holding facilities. The riverine plastic proportion slightly increased downstream. Approximately 9.9 g/person/day of plastic litter was discharged into Jakarta's surface water during rainy season and recovered by floating booms. To reduce plastic pollution and its severe impacts on aquatic ecosystems and human health, further field investigation is necessary to design an effective clean-up system and litter-prevention strategy.


Assuntos
Ecossistema , Plásticos , Monitoramento Ambiental , Humanos , Indonésia , Resíduos/análise , Água
6.
Chemosphere ; 279: 130642, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34134426

RESUMO

The hydrophobicity properties of dissolved organic matter (DOM) found in tropical peat water has an impact on the formation of carcinogenic DBPs such as trihalomethanes-4 (THM4) and haloacetic acids-5 (HAA5). This study was conducted to determine the effect of microbubble ozonation on changes in DOM fraction and its effect on the formation of THM4 and HAA5. Alum coagulation and activated carbon adsorption were carried out to reduce the DOM concentration before microbubble ozonation. Microbubble ozonation was carried out at acidic (pH 5.5), neutral (pH 7) and alkaline (pH 8.5) conditions to determine the effect of pH. Coagulation and adsorption of activated carbon were successful in reducing the presence of the hydrophobic acid fraction (HPOA) in peat water completely, but the transphilic (TPH), charged hydrophilic (HPIC) and neutral hydrophilic (HPIN) fractions remained in the water. Microbubble ozonation succeeded in decreasing the presence of TPH fraction but increased the formation of HPIC and HPIN. The degradation of the TPH fraction resulted in reduced formation of chlorinated THM4 and HAA5 (C-THM4 and C-HAA5). On the other hand, the formation of HPIC and HPIN fractions increased the formation of brominated THM4 and HAA5 (B-THM4 and B-HAA5) after the final chlorination process.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Interações Hidrofóbicas e Hidrofílicas , Microbolhas , Solo , Trialometanos/análise , Água , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 747: 141540, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32791420

RESUMO

The high concentrations of dissolved organic matter (DOM), chloride, and bromide in tropical peat water have a significant impact on the formation of carcinogenic disinfection by-products (DBPs) such as trihalomethanes (THMs) and haloacetic acids (HAAs), especially during the chlorination process. Therefore, other pretreatment methods to effectively remove these harmful substances in the water during treatment are needed. The aim of this study was to determine the effects of microbubble pre-ozonation pH on the reduction of THM4 and HAA5 formed during the peat water treatment process and to determine the best conditions for microbubble pre-ozonation to reduce the formation of these two classes of DBPs. The microbubble pre-ozonation was conducted at a pH of 5.5, 7, and 8.5. Furthermore, the primary treatments applied after this pretreatment were coagulation and activated carbon adsorption before post-chlorine disinfection. The coagulation process using aluminum sulfate and activated carbon adsorption succeeded in reducing the formation of THM4 after chlorination, to a level below USEPA standards, but the concentration of HAA5 was still high. However, the use of microbubble pre-ozonation significantly reduced the formation of both classes of compounds during the chlorination process of the peat water. Also, the concentration of THM4 increased during the pre-ozonation process in all pH conditions, but HAA5 decreased except in alkaline state. Furthermore, the ideal conditions for microbubble pre-ozonation on peat water were at pH 7 (neutral) after 30 min, with the total THM4 concentration at 33.73 ± 0.40 µg/L, and that of HAA5 at 49.89 ± 0.09 µg/L, falling below the USEPA standard.


Assuntos
Desinfetantes , Água Potável , Ozônio , Poluentes Químicos da Água , Purificação da Água , Desinfetantes/análise , Desinfecção , Halogenação , Concentração de Íons de Hidrogênio , Microbolhas , Solo , Trialometanos/análise , Poluentes Químicos da Água/análise
8.
Sci Total Environ ; 738: 140130, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32806383

RESUMO

A novel screening method was developed to prioritize aquatic and human health risks of pesticides based on usage data, runoff modelling and effect prediction. An important asset of this new method is that it does not require measured concentration data, which are often unavailable or difficult to obtain in low- and middle-income countries like Indonesia. The method was applied to prioritize 31 agricultural pesticides used in the Upper Citarum River Basin in West Java, Indonesia. Ranking of pesticides based on predicted concentrations generally showed good agreement with ranking based on concentrations measured by passive sampling. The individual pesticide intake through the consumption of river water was predicted to cause negligible human health risks, but substantial aquatic risks (i.e. PEC/PNEC >1) were predicted for profenofos (5.2.E+01), propineb (3.6.E+01), chlorpyrifos (2.6.E+01), carbofuran (1.7.E+01), imidacloprid (9.4.E+00), methomyl (7.6.E+00) and chlorantraniliprole (3.6.E+00). In order to protect the aquatic environment, water managers are advised to take measures to reduce the use and runoff of these pesticides in the UCRB. The screening assessment can be further refined by performing additional effect studies for some pesticides, pesticide mixtures and validation of the predicted water concentrations by targeted measurements.

9.
J Hazard Mater ; 377: 305-314, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31173980

RESUMO

Fly-ash based geopolymers have been considered as a low-cost yet effective adsorbent for the removal of heavy metal cations, including Cu2+, from the aqueous environment. In the synthesis of geopolymers, the fly-ash needs to be alkali activated using several systems rich in either Na+ or K+. Herein, we investigate the effect of alkali activation on the structural alteration and its consequence on the adsorption capacity. Based on the series of detailed characterizations, the geopolymers formed in Na+-based alkali system is found to have more organized structure compared to that formed in K+-based alkali system. Moreover, the incorporation of additional silicate creates ancillary structure which positively contributes to the organization of the overall structure. All the samples, fly-ash and geopolymers, exhibits Cu2+ adsorption based on Langmuir isotherm and pseudo-second order kinetic. The geopolymers with more organized structure display higher Cu2+ adsorption capacity, which reaches 40 mg g-1 higher in comparison to 7 mg g-1 for fly ash sample. The structural alteration induces the formation of open-framework structure with more accessible sites which can accommodate more Cu2+. Our study provides a fundamental understanding for the design and fabrication of geopolymers as an effective adsorbent for the removal of heavy metal cations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...