Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 10(12)2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271940

RESUMO

Toll-like receptors (TLRs) are transmembrane proteins that are key regulators of innate and adaptive immune responses, particularly TLR4, and they have been identified as potential drug targets for the treatment of disease. Several low-molecular-weight compounds are being considered as new drug targets for various applications, including as immune modulators. Mygalin, a 417 Da synthetic bis-acylpolyamine, is an analog of spermidine that has microbicidal activity. In this study, we investigated the effect of mygalin on the innate immune response based on a virtual screening (VS) and molecular docking analysis. Bone marrow-derived macrophages and the cell lines J774A.1 and RAW 264.7 stimulated with lipopolysaccharide (LPS) were used to confirm the data obtained in silico. Virtual screening and molecular docking suggested that mygalin binds to TLR4 via the protein myeloid differentiation factor 2 (MD-2) and LPS. Macrophages stimulated by mygalin plus LPS showed suppressed gene expression of tumor necrosis factor (TNF-α), interleukine 6 (IL-6), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), as well as inhibition of signaling protein p65 of the nuclear factor κB (NF-κB), resulting in decreased production of nitric oxide (NO) and TNF-α. These results indicate that mygalin has anti-inflammatory potential, being an attractive option to be explored. In addition, we reinforce the importance of virtual screening analysis to assist in the discovery of new drugs.


Assuntos
Simulação de Acoplamento Molecular , Espermidina/análogos & derivados , Receptor 4 Toll-Like/metabolismo , Animais , Imunidade Inata/efeitos dos fármacos , Camundongos , Conformação Proteica , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Espermidina/metabolismo , Espermidina/farmacologia , Receptor 4 Toll-Like/química
2.
Toxins (Basel) ; 11(6)2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31195639

RESUMO

Atopic dermatitis (AD) is a chronic and inflammatory skin disease with intense pruritus and xerosis. AD pathogenesis is multifactorial, involving genetic, environmental, and immunological factors, including the participation of Staphylococcus aureus. This bacterium colonizes up to 30-100% of AD skin and its virulence factors are responsible for its pathogenicity and antimicrobial survival. This is a concise review of S. aureus superantigen-activated signaling pathways, highlighting their involvement in AD pathogenesis, with an emphasis on skin barrier disruption, innate and adaptive immunity dysfunction, and microbiome alterations. A better understanding of the combined mechanisms of AD pathogenesis may enhance the development of future targeted therapies for this complex disease.


Assuntos
Toxinas Bacterianas , Dermatite Atópica/microbiologia , Staphylococcus aureus , Imunidade Adaptativa , Dermatite Atópica/imunologia , Dermatite Atópica/terapia , Humanos , Microbiota , Infecções Estafilocócicas/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...