Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 15(4): e16128, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36740996

RESUMO

Vascular endothelial protein tyrosine phosphatase (VE-PTP) influences endothelial barrier function by regulating the activation of tyrosine kinase receptor Tie2. We determined whether this action is linked to the development of atherosclerosis by examining the influence of arterial shear stress on VE-PTP, Tie2 activation, plasma leakage, and atherogenesis. We found that exposure to high average shear stress led to downstream polarization and endocytosis of VE-PTP accompanied by Tie2 activation at cell junctions. In aortic regions with disturbed flow, VE-PTP was not redistributed away from Tie2. Endothelial cells exposed to high shear stress had greater Tie2 activation and less macromolecular permeability than regions with disturbed flow. Deleting endothelial VE-PTP in VE-PTPiECKO mice increased Tie2 activation and reduced plasma leakage in atheroprone regions. ApoE-/- mice bred with VE-PTPiECKO mice had less plasma leakage and fewer atheromas on a high-fat diet. Pharmacologic inhibition of VE-PTP by AKB-9785 had similar anti-atherogenic effects. Together, the findings identify VE-PTP as a novel target for suppression of atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , Células Endoteliais/metabolismo , Placa Aterosclerótica/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Aterosclerose/metabolismo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo
2.
Am J Respir Crit Care Med ; 206(4): 488-500, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35699655

RESUMO

Rationale: Capillary leakage frequently occurs during sepsis and after major surgery and is associated with microvascular dysfunction and adverse outcome. Procalcitonin is a well-established biomarker in inflammation without known impact on vascular integrity. Objectives: We determined how procalcitonin induces endothelial hyperpermeability and how targeting procalcitonin protects vascular barrier integrity. Methods: In a prospective observational clinical study, procalcitonin levels were assessed in 50 patients who underwent cardiac surgery and correlated to postoperative fluid and vasopressor requirements along with sublingual microvascular functionality. Effects of the procalcitonin signaling pathway on endothelial barrier and adherens junctional integrity were characterized in vitro and verified in mice. Inhibition of procalcitonin activation by dipeptidyl-peptidase 4 (DPP4) was evaluated in murine polymicrobial sepsis and clinically verified in cardiac surgery patients chronically taking the DPP4 inhibitor sitagliptin. Measurements and Main Results: Elevated postoperative procalcitonin levels identified patients with 2-fold increased fluid requirements (P < 0.01), 1.8-fold higher vasopressor demand (P < 0.05), and compromised microcirculation (reduction to 63.5 ± 2.8% of perfused vessels, P < 0.05). Procalcitonin induced 1.4-fold endothelial and 2.3-fold pulmonary capillary permeability (both Ps < 0.001) by destabilizing VE-cadherin. Procalcitonin effects were dependent on activation by DPP4, and targeting the procalcitonin receptor or DPP4 during sepsis-induced hyperprocalcitonemia reduced capillary leakage by 54 ± 10.1% and 60.4 ± 6.9% (both Ps < 0.01), respectively. Sitagliptin before cardiac surgery was associated with augmented microcirculation (74.1 ± 1.7% vs. 68.6 ± 1.9% perfused vessels in non-sitagliptin-medicated patients, P < 0.05) and with 2.3-fold decreased fluid (P < 0.05) and 1.8-fold reduced vasopressor demand postoperatively (P < 0.05). Conclusions: Targeting procalcitonin's action on the endothelium is a feasible means to preserve vascular integrity during systemic inflammation associated with hyperprocalcitonemia.


Assuntos
Dipeptidil Peptidase 4 , Sepse , Animais , Permeabilidade Capilar , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidase 4/farmacologia , Dipeptidil Peptidase 4/uso terapêutico , Endotélio Vascular/metabolismo , Inflamação/metabolismo , Camundongos , Pró-Calcitonina , Sepse/tratamento farmacológico , Sepse/metabolismo
3.
J Cell Sci ; 134(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34851405

RESUMO

Cadherin-mediated cell adhesion requires anchoring via the ß-catenin-α-catenin complex to the actin cytoskeleton, yet, α-catenin only binds F-actin weakly. A covalent fusion of VE-cadherin to α-catenin enhances actin anchorage in endothelial cells and strongly stabilizes endothelial junctions in vivo, blocking inflammatory responses. Here, we have analyzed the underlying mechanism. We found that VE-cadherin-α-catenin constitutively recruits the actin adaptor vinculin. However, removal of the vinculin-binding region of α-catenin did not impair the ability of VE-cadherin-α-catenin to enhance junction integrity. Searching for an alternative explanation for the junction-stabilizing mechanism, we found that an antibody-defined epitope, normally buried in a short α1-helix of the actin-binding domain (ABD) of α-catenin, is openly displayed in junctional VE-cadherin-α-catenin chimera. We found that this epitope became exposed in normal α-catenin upon triggering thrombin-induced tension across the VE-cadherin complex. These results suggest that the VE-cadherin-α-catenin chimera stabilizes endothelial junctions due to conformational changes in the ABD of α-catenin that support constitutive strong binding to actin.


Assuntos
Caderinas , Células Endoteliais , Citoesqueleto de Actina , Actinas/genética , Caderinas/genética , Junções Intercelulares , Vinculina , alfa Catenina/genética
4.
Invest Ophthalmol Vis Sci ; 61(14): 12, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33315051

RESUMO

Purpose: Tyrosine kinase with immunoglobulin-like and EGF-like domains 2 (Tie2) activation in Schlemm's canal (SC) endothelium is required for the maintenance of IOP, making the angiopoietin/Tie2 pathway a target for new and potentially disease modifying glaucoma therapies. The goal of the present study was to examine the effects of a Tie2 activator, AKB-9778, on IOP and outflow function. Methods: AKB-9778 effects on IOP was evaluated in humans, rabbits, and mice. Localization studies of vascular endothelial protein tyrosine phosphatase (VE-PTP), the target of AKB-9778 and a negative regulator of Tie2, were performed in human and mouse eyes. Mechanistic studies were carried out in mice, monitoring AKB-9778 effects on outflow facility, Tie2 phosphorylation, and filtration area of SC. Results: AKB-9778 lowered IOP in patients treated subcutaneously for diabetic eye disease. In addition to efficacious, dose-dependent IOP lowering in rabbit eyes, topical ocular AKB-9778 increased Tie2 activation in SC endothelium, reduced IOP, and increased outflow facility in mouse eyes. VE-PTP was localized to SC endothelial cells in human and mouse eyes. Mechanistically, AKB-9778 increased the filtration area of SC for aqueous humor efflux in both wild type and in Tie2+/- mice. Conclusions: This is the first report of IOP lowering in humans with a Tie2 activator and functional demonstration of its action in remodeling SC to increase outflow facility and lower IOP in fully developed mice. Based on these studies, a phase II clinical trial is in progress to advance topical ocular AKB-9778 as a first in class, Tie2 activator for treatment for ocular hypertension and glaucoma.


Assuntos
Compostos de Anilina/farmacologia , Pressão Intraocular/efeitos dos fármacos , Receptor TIE-2/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/antagonistas & inibidores , Ácidos Sulfônicos/farmacologia , Malha Trabecular/efeitos dos fármacos , Animais , Retinopatia Diabética/tratamento farmacológico , Método Duplo-Cego , Feminino , Imunofluorescência , Glaucoma/tratamento farmacológico , Glaucoma/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Malha Trabecular/metabolismo , Malha Trabecular/patologia
5.
Blood ; 136(5): 627-639, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32369573

RESUMO

Neutrophil extravasation requires opening of the endothelial barrier but does not necessarily cause plasma leakage. Leaks are prevented by contractile actin filaments surrounding the diapedesis pore, keeping this opening tightly closed around the transmigrating neutrophils. We have identified the receptor system that is responsible for this. We show that silencing, or gene inactivation, of endothelial Tie-2 results in leak formation in postcapillary venules of the inflamed cremaster muscle at sites of neutrophil extravasation, as visualized by fluorescent microspheres. Leakage was dependent on neutrophil extravasation, because it was absent upon neutrophil depletion. We identified the Cdc42 GTPase exchange factor FGD5 as a downstream target of Tie-2 that is essential for leakage prevention during neutrophil extravasation. Looking for the Tie-2 agonist and its source, we found that platelet-derived angiopoietin-1 (Angpt1) was required to prevent neutrophil-induced leaks. Intriguingly, blocking von Willebrand factor (VWF) resulted in vascular leaks during transmigration, indicating that platelets interacting with endothelial VWF activate Tie-2 by secreting Angpt1, thereby preventing diapedesis-induced leakiness.


Assuntos
Plaquetas , Permeabilidade Capilar/fisiologia , Receptor TIE-2/metabolismo , Migração Transendotelial e Transepitelial/fisiologia , Fator de von Willebrand/metabolismo , Angiopoietina-1/metabolismo , Animais , Células Endoteliais da Veia Umbilical Humana , Humanos , Leucócitos , Camundongos , Camundongos Endogâmicos C57BL
6.
Arterioscler Thromb Vasc Biol ; 40(2): 378-393, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31826650

RESUMO

OBJECTIVE: Vascular endothelial (VE)-cadherin is of dominant importance for the formation and stability of endothelial junctions, yet induced gene inactivation enhances vascular permeability in the lung but does not cause junction rupture. This study aims at identifying the junctional adhesion molecule, which is responsible for preventing endothelial junction rupture in the pulmonary vasculature in the absence of VE-cadherin. Approach and Results: We have compared the relevance of ESAM (endothelial cell-selective adhesion molecule), JAM (junctional adhesion molecule)-A, PECAM (platelet endothelial cell adhesion molecule)-1, and VE-cadherin for vascular barrier integrity in various mouse tissues. Gene inactivation of ESAM enhanced vascular permeability in the lung but not in the heart, skin, and brain. In contrast, deletion of JAM-A or PECAM-1 did not affect barrier integrity in any of these organs. Blocking VE-cadherin with antibodies caused lethality in ESAM-/- mice within 30 minutes but had no such effect in JAM-A-/-, PECAM-1-/- or wild-type mice. Likewise, induced gene inactivation of VE-cadherin caused rapid lethality only in the absence of ESAM. Ultrastructural analysis revealed that only combined interference with VE-cadherin and ESAM disrupted endothelial junctions and caused massive blood coagulation in the lung. Mechanistically, we could exclude a role of platelet ESAM in coagulation, changes in the expression of other junctional proteins or a contribution of cytoplasmic signaling domains of ESAM. CONCLUSIONS: Despite well-documented roles of JAM-A and PECAM-1 for the regulation of endothelial junctions, only for ESAM, we detected an essential role for endothelial barrier integrity in a tissue-specific way. In addition, we found that it is ESAM which prevents endothelial junction rupture in the lung when VE-cadherin is absent.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Permeabilidade Capilar/fisiologia , Moléculas de Adesão Celular/metabolismo , Morte Celular/fisiologia , Endotélio Vascular/metabolismo , Pulmão/metabolismo , Animais , Coagulação Sanguínea/fisiologia , Adesão Celular , Células Cultivadas , Cricetinae , Endotélio Vascular/ultraestrutura , Feminino , Immunoblotting , Pulmão/irrigação sanguínea , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Modelos Animais , Transdução de Sinais
7.
Cell Tissue Res ; 355(3): 577-86, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24566520

RESUMO

The endothelial layer of blood vessels controls the passage of cells and solutes from the blood into the surrounding tissue. Crucial for this regulation is the integrity of endothelial cell-cell junctions. Various molecular mechanisms control junctional integrity of the endothelial layer including GTPases, modulation of the actomyosin cytoskeleton and phosphorylation and dephosphorylation of junctional proteins. Several kinases and phosphatases have been identified that are good candidates for the regulation of the endothelial barrier function. For some of them, in vivo evidence has recently been presented that highlights their importance in either the regulation of vascular permeability or leukocyte extravasation. This review will summarize current knowledge about the regulation of endothelial junctions by kinases and phosphatases. In particular, the role of the endothelial specific phosphatase VE-PTP in the context of endothelial cell contact stability will be highlighted.


Assuntos
Células Endoteliais/enzimologia , Endotélio Vascular/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Fosfotransferases/metabolismo , Animais , Humanos , Fosforilação
8.
Nat Immunol ; 15(3): 223-30, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24487320

RESUMO

Tyrosine phosphorylation of the adhesion molecule VE-cadherin is assumed to affect endothelial junction integrity. However, it remains unclear whether tyrosine residues of VE-cadherin are required for the induction of vascular permeability and the regulation of leukocyte extravasation in vivo. We found here that knock-in mice expressing a Y685F mutant of VE-cadherin had impaired induction of vascular permeability, but those expressing a Y731F mutant did not. In contrast, mice expressing the Y731F VE-cadherin mutant showed decreased neutrophil-extravasation in cremaster tissue, but those expressing the Y685F mutant did not. Whereas inflammatory mediators induced the phosphorylation of Tyr685 in vivo, Tyr731 showed high baseline phosphorylation. Leukocytes triggered dephosphorylation of Tyr731 via the tyrosine phosphatase SHP-2, which allowed the adaptin AP-2 to bind and initiate endocytosis of VE-cadherin. Thus, Tyr685 and Tyr731 of VE-cadherin distinctly and selectively regulate the induction of vascular permeability or leukocyte extravasation.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Permeabilidade Capilar/fisiologia , Quimiotaxia de Leucócito/fisiologia , Células Endoteliais/metabolismo , Animais , Antígenos CD/química , Benzetônio/análogos & derivados , Caderinas/química , Imunofluorescência , Técnicas de Introdução de Genes , Humanos , Immunoblotting , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Tirosina/metabolismo
9.
J Cell Biol ; 185(4): 657-71, 2009 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-19451274

RESUMO

Vascular endothelial protein tyrosine phosphatase (VE-PTP) is an endothelial-specific receptor-type tyrosine phosphatase that associates with Tie-2 and VE-cadherin. VE-PTP gene disruption leads to embryonic lethality, vascular remodeling defects, and enlargement of vascular structures in extraembryonic tissues. We show here that antibodies against the extracellular part of VE-PTP mimic the effects of VE-PTP gene disruption exemplified by vessel enlargement in allantois explants. These effects require the presence of the angiopoietin receptor Tie-2. Analyzing the mechanism we found that anti-VE-PTP antibodies trigger endocytosis and selectively affect Tie-2-associated, but not VE-cadherin-associated VE-PTP. Dissociation of VE-PTP triggers the activation of Tie-2, leading to enhanced endothelial cell proliferation and enlargement of vascular structures through activation of Erk1/2. Importantly, the antibody effect on vessel enlargement is also observed in newborn mice. We conclude that VE-PTP is required to balance Tie-2 activity and endothelial cell proliferation, thereby controlling blood vessel development and vessel size.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Endotélio Vascular/citologia , Receptor TIE-2/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/fisiologia , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Proliferação de Células , Células Cultivadas , Embrião de Mamíferos/irrigação sanguínea , Humanos , Camundongos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo
10.
Trends Cell Biol ; 19(1): 8-15, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19010680

RESUMO

The regulation of endothelial cell contacts is of central importance for the barrier function of the blood vessel wall and for the control of leukocyte extravasation. In addition, the plasticity of endothelial cell contacts is regulated during angiogenesis by growth factors, such as vascular endothelial growth factor and angiopoietin-1. Despite the participation of several adhesion molecules and receptors in the control of endothelial cell contacts, most of the currently known mechanisms involve vascular endothelial cadherin (VE-cadherin), an essential adhesion molecule for the stability of endothelial junctions. Here, we focus on recent results showing how leukocytes and angiogenic factors regulate endothelial junctions.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Indutores da Angiogênese/metabolismo , Animais , Adesão Celular , Humanos , Leucócitos/metabolismo , Transdução de Sinais
11.
J Exp Med ; 205(12): 2929-45, 2008 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19015309

RESUMO

We have shown recently that vascular endothelial protein tyrosine phosphatase (VE-PTP), an endothelial-specific membrane protein, associates with vascular endothelial (VE)-cadherin and enhances VE-cadherin function in transfected cells (Nawroth, R., G. Poell, A. Ranft, U. Samulowitz, G. Fachinger, M. Golding, D.T. Shima, U. Deutsch, and D. Vestweber. 2002. EMBO J. 21:4885-4895). We show that VE-PTP is indeed required for endothelial cell contact integrity, because down-regulation of its expression enhanced endothelial cell permeability, augmented leukocyte transmigration, and inhibited VE-cadherin-mediated adhesion. Binding of neutrophils as well as lymphocytes to endothelial cells triggered rapid (5 min) dissociation of VE-PTP from VE-cadherin. This dissociation was only seen with tumor necrosis factor alpha-activated, but not resting, endothelial cells. Besides leukocytes, vascular endothelial growth factor also rapidly dissociated VE-PTP from VE-cadherin, indicative of a more general role of VE-PTP in the regulation of endothelial cell contacts. Dissociation of VE-PTP and VE-cadherin in endothelial cells was accompanied by tyrosine phoshorylation of VE-cadherin, beta-catenin, and plakoglobin. Surprisingly, only plakoglobin but not beta-catenin was necessary for VE-PTP to support VE-cadherin adhesion in endothelial cells. In addition, inhibiting the expression of VE-PTP preferentially increased tyrosine phosphorylation of plakoglobin but not beta-catenin. In conclusion, leukocytes interacting with endothelial cells rapidly dissociate VE-PTP from VE-cadherin, weakening endothelial cell contacts via a mechanism that requires plakoglobin but not beta-catenin.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Células Endoteliais/metabolismo , Endotélio , Leucócitos/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , gama Catenina/metabolismo , Animais , Antígenos CD/genética , Caderinas/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Endossomos/metabolismo , Células Endoteliais/citologia , Endotélio/citologia , Endotélio/metabolismo , Humanos , Junções Intercelulares/metabolismo , Leucócitos/citologia , Linfócitos/citologia , Linfócitos/metabolismo , Camundongos , Neutrófilos/citologia , Neutrófilos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Fator de Necrose Tumoral alfa/metabolismo , beta Catenina/metabolismo , gama Catenina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...