Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 10: 206, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20849575

RESUMO

BACKGROUND: Partial resistance to plant pathogens is extensively used in breeding programs since it could contribute to resistance durability. Partial resistance often builds up during plant development and confers quantitative and usually broad-spectrum resistance. However, very little is known on the mechanisms underlying partial resistance. Partial resistance is often explained by poorly effective induction of plant defense systems. By exploring rice natural diversity, we asked whether expression of defense systems before infection could explain partial resistance towards the major fungal pathogen Magnaporthe oryzae. The constitutive expression of 21 defense-related genes belonging to the defense system was monitored in 23 randomly sampled rice cultivars for which partial resistance was measured. RESULTS: We identified a strong correlation between the expression of defense-related genes before infection and partial resistance. Only a weak correlation was found between the induction of defense genes and partial resistance. Increasing constitutive expression of defense-related genes also correlated with the establishment of partial resistance during plant development. Some rice genetic sub-groups displayed a particular pattern of constitutive expression, suggesting a strong natural polymorphism for constitutive expression of defense. Constitutive levels of hormones like salicylic acid and ethylene cannot explain constitutive expression of defense. We could identify an area of the genome that contributes to explain both preformed defense and partial resistance. CONCLUSION: These results indicate that constitutive expression of defense-related genes is likely responsible for a large part of partial resistance in rice. The finding of this preformed defense system should help guide future breeding programs and open the possibility to identify the molecular mechanisms behind partial resistance.


Assuntos
Imunidade Inata , Magnaporthe/patogenicidade , Oryza/imunologia , Doenças das Plantas/genética , Etilenos/análise , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/genética , Oryza/microbiologia , Locos de Características Quantitativas , Ácido Salicílico/análise
2.
Phytopathology ; 98(12): 1320-5, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19000007

RESUMO

Coffee berry disease (CBD), caused by Colletotrichum kahawae, is a major constraint for Arabica coffee cultivation in Africa. The disease is specific to green berries and can lead to 60% harvest losses. In Cameroon, mixed cropping systems of coffee with other crops, such as fruit trees, are very widespread agricultural practices. Fruit trees are commonly planted at random on coffee farms, providing a heterogeneous shading pattern for coffee trees growing underneath. Based on a recent study of CBD, it is known that those plants can reduce disease incidence. To assess the specific effect of shade, in situ and in vitro disease development was compared between coffee trees shaded artificially by a net and trees located in full sunlight. In the field, assessments confirmed a reduction in CBD on trees grown under shade compared with those grown in full sunlight. Artificial inoculations in the laboratory showed that shade did not have any effect on the intrinsic susceptibility of coffee berries to CBD. Coffee shading mainly acts on environmental parameters in limiting disease incidence. In addition to reducing yield losses, agroforestry system may also be helpful in reducing chemical control of the disease and in diversifying coffee growers' incomes.


Assuntos
Coffea/microbiologia , Coffea/efeitos da radiação , Colletotrichum/patogenicidade , Luz Solar , África , Agricultura/métodos , Agricultura Florestal/métodos , Doenças das Plantas/microbiologia
3.
Mol Plant Microbe Interact ; 21(7): 869-78, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18533828

RESUMO

Large amounts of expression data dealing with biotic stresses in rice have been produced in the past 5 years. Here, we extensively review approximately 70 publications and gather together information on more than 2,500 genes of the rice defense arsenal. This information was integrated into the OryGenesDB database. Several genes (e.g., metallothioneins and PBZ1) appear to be hallmarks of rice-pathogen interactions. Cross-referencing this information with the rice kinome highlighted some defense genes and kinases as possible central nodes of regulation. Cross referencing defense gene expression and quantitative trait loci (QTL) information identified some candidate genes for QTL. Overall, pathogenesis-related genes and disease regulators were found to be statistically associated with disease QTL. At the genomic level, we observed that some regions are richer than others and that some chromosomes (e.g., 11 and 12), which contain a lot of resistance gene analogs, have a low content of defense genes. Finally, we show that classical defense genes and defense-related genes such as resistance genes are preferentially organized in clusters. These clusters are not always coregulated and individual paralogs can show specific expression patterns. Thus, the rice defense arsenal has an ARCHIPELAGO-like genome structure at the macro and micro level. This resource opens new possibilities for marker-assisted selection and QTL cloning.


Assuntos
Bases de Dados Genéticas , Oryza/genética , Doenças das Plantas/genética , Genes de Plantas , Genoma de Planta , Genômica , Interações Hospedeiro-Patógeno/genética , Magnaporthe/patogenicidade , Oryza/microbiologia , Mapeamento Físico do Cromossomo , Doenças das Plantas/microbiologia , Locos de Características Quantitativas
4.
New Phytol ; 174(1): 159-171, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17335506

RESUMO

* Our view of genes involved in rice disease resistance is far from complete. Here we used a gene-for-gene relationship corresponding to the interaction between atypical avirulence gene ACE1 from Magnaporthe grisea and rice resistance gene Pi33 to better characterize early rice defence responses induced during such interaction. * Rice genes differentially expressed during early stages of Pi33/ACE1 interaction were identified using DNA chip-based differential hybridization and QRT-PCR survey of the expression of known and putative regulators of disease resistance. * One hundred genes were identified as induced or repressed during rice defence response, 80% of which are novel, including resistance gene analogues. Pi33/ACE1 interaction also triggered the up-regulation of classical PR defence genes and a massive down-regulation of chlorophyll a/b binding genes. Most of these differentially expressed genes were induced or repressed earlier in Pi33/ACE1 interaction than in the gene-for-gene interaction involving Nipponbare resistant cultivar. * Besides demonstrating that an ACE1/Pi33 interaction induced classical and specific expression patterns, this work provides a list of new genes likely to be involved in rice disease resistance.


Assuntos
Regulação da Expressão Gênica de Plantas , Magnaporthe/fisiologia , Oryza/genética , Regulação para Baixo , Genes Fúngicos , Genes de Plantas , Magnaporthe/genética , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/imunologia , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima
5.
Plant Dis ; 91(10): 1229-1236, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30780530

RESUMO

Coffee berry disease (CBD) is caused by Colletotrichum kahawae. This pathogen only attacks green berries; it causes cherry rot and premature fruit fall. The disease leads to major harvest losses in the western highland region of Cameroon. The origin of the primary inoculum and the beginning of epidemics are unknown. The interactions between the pathogen and its host were studied at locations where CBD was known to cause severe disease. The disease was monitored weekly in uniform plots of adjacent coffee trees at Santa (1,750 m) in 2003 and 2004 and Bafou (1,820 m) in 2004 and 2005. The logistic model provided good fit of the epidemic's temporal dynamics. The spatial distribution of CBD over time indicated that plants in a plot were contaminated stepwise from the first infected coffee tree. An analysis of semi-variograms and the disease dispersal maps obtained by kriging revealed primary infection foci at both sites. They were observed from the 8th to the 10th week after flowering at Bafou and from the 11th to the 13th week at Santa. CBD affected the entire plots 3 weeks after the foci first appeared. These results suggest that inoculum from previous epidemics survives at points in the initial foci in a coffee plantation.

6.
Theor Appl Genet ; 106(5): 794-803, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12647052

RESUMO

Rice progenies used for the construction of genetic maps permit exhaustive identification and characterization of resistance genes present in their parental cultivars. We inoculated a rice progeny derived from the cross IR64 x Azucena with different Magnaporthe grisea isolates that showed differential responses on the parental cultivars. By QTL mapping, nine unlinked loci conferring resistance to each isolate were identified and named Pi-24( t) to Pi-32( t). They could correspond to nine specific resistance genes. Five of these resistance loci (RLs) were mapped at chromosomal locations where no resistance gene was previously reported, defining new resistance genes. Using degenerate primers of the NBS (nucleotide binding site) motif found in many resistance genes, two resistance gene analogues (RGAs) IR86 and IR14 were identified and mapped closely to two blast RLs (resistance identified in this study, i.e. Pi-29(t) and Pi-30(t) respectively). These two RLs may correspond to the Pi-11 and Pi-a blast resistance genes previously identified. Moreover, the ir86 and ir14 genes have been identified "in silico" on the indica rice cultivar 93-11, recently sequenced by Chinese researchers. Both genes encodes NBS-LRR-like proteins that are characteristics of plant-disease resistance genes.


Assuntos
Mapeamento Cromossômico , Oryza/genética , Locos de Características Quantitativas , Interações Hospedeiro-Parasita/genética , Magnaporthe/patogenicidade , Oryza/microbiologia
7.
Proc Natl Acad Sci U S A ; 98(12): 6963-8, 2001 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-11391010

RESUMO

We describe in this study punchless, a nonpathogenic mutant from the rice blast fungus M. grisea, obtained by plasmid-mediated insertional mutagenesis. As do most fungal plant pathogens, M. grisea differentiates an infection structure specialized for host penetration called the appressorium. We show that punchless differentiates appressoria that fail to breach either the leaf epidermis or artificial membranes such as cellophane. Cytological analysis of punchless appressoria shows that they have a cellular structure, turgor, and glycogen content similar to those of wild type before penetration, but that they are unable to differentiate penetration pegs. The inactivated gene, PLS1, encodes a putative integral membrane protein of 225 aa (Pls1p). A functional Pls1p-green fluorescent protein fusion protein was detected only in appressoria and was localized in plasma membranes and vacuoles. Pls1p is structurally related to the tetraspanin family. In animals, these proteins are components of membrane signaling complexes controlling cell differentiation, motility, and adhesion. We conclude that PLS1 controls an appressorial function essential for the penetration of the fungus into host leaves.


Assuntos
Proteínas Fúngicas/genética , Genes Fúngicos/fisiologia , Magnaporthe/genética , Proteínas de Membrana/genética , Oryza/microbiologia , Sequência de Bases , Magnaporthe/patogenicidade , Dados de Sequência Molecular , Mutação
8.
Mol Plant Microbe Interact ; 13(2): 217-27, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10659712

RESUMO

Three genetically independent avirulence genes, AVR1-Irat7, AVRI-MedNoi; and AVR1-Ku86, were identified in a cross involving isolates Guy11 and 2/0/3 of the rice blast fungus, Magnaporthe grisea. Using 76 random progeny, we constructed a partial genetic map with restriction fragment length polymorphism (RFLP) markers revealed by probes such as the repeated sequences MGL/MGR583 and Pot3/MGR586, cosmids from the M. grisea genetic map, and a telomere sequence oligonucleotide. Avirulence genes AVR1-MedNoi and AVR1-Ku86 were closely linked to telomere RFLPs such as marker TelG (6 cM from AVR1-MedNoi) and TelF (4.5 cM from AVR1-Ku86). Avirulence gene AVR1-Irat7 was linked to a cosmid RFLP located on chromosome 1 and mapped at 20 cM from the avirulence gene AVR1-CO39. Using bulked segregant analysis, we identified 11 random amplified polymorphic DNA (RAPD) markers closely linked (0 to 10 cM) to the avirulence genes segregating in this cross. Most of these RAPD markers corresponded to junction fragments between known or new transposons and a single-copy sequence. Such junctions or the whole sequences of single-copy RAPD markers were frequently absent in one parental isolate. Single-copy sequences from RAPD markers tightly linked to avirulence genes will be used for positional cloning.


Assuntos
Genes Fúngicos , Magnaporthe/genética , Oryza/microbiologia , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , Primers do DNA/genética , DNA Fúngico/genética , Marcadores Genéticos , Magnaporthe/patogenicidade , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , Polimorfismo de Fragmento de Restrição , Técnica de Amplificação ao Acaso de DNA Polimórfico , Virulência/genética
9.
Phytopathology ; 87(12): 1243-9, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18945025

RESUMO

ABSTRACT Two doubled-haploid rice populations, IR64/Azucena and IRAT177/ Apura, were used to identify markers linked to rice yellow mottle virus (RYMV) resistance using core restriction fragment length polymorphism (RFLP) maps. Resistance was measured by mechanical inoculation of 19-day-old seedlings followed by assessment of virus content by enzyme-linked immunosorbent assay tests 15 days after inoculation. IR64/Azucena and IRAT177/Apura populations, 72 and 43 lines, respectively, were evaluated, and resistance was found to be polygenic. Resistance was expressed as a slower virus multiplication, low symptom expression, and limited yield loss when assessed at the field level. Bulked segregant analysis using the IR64/Azucena population identified a single random amplified polymorphic DNA marker that mapped on chromosome 12 and corresponded to a major quantitative trait locus (QTL) evidenced by interval mapping. When pooling RFLP data, integrated mapping of this chromosome revealed that the QTL was common to the two populations and corresponded to a small chromosomal segment known to contain a cluster of major blast resistance genes. This region of the genome also reflected the differentiation observed at the RFLP level between the subspecies indica and japonica of Oryza sativa. This is consistent with the observation that most sources of RYMV resistance used in rice breeding are found in upland rice varieties that typically belong to the japonica subspecies.

10.
Theor Appl Genet ; 93(5-6): 859-63, 1996 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24162418

RESUMO

Two dominant genes conferring complete resistance to specific isolates of the rice blast fungus, Pyricularia grisea Sacc., were located on the molecular map of rice in this study. Pi-l(t) is a blast resistance gene derived from the cultivar 'LAC23'. Its map location was determined using a pair of nearly isogenic lines (NILs) and a B6F3 segregating population from which the isoline was derived. RFLP analysis showed that Pi-l(t) is located near the end of chromosome 11, linked to RZ536 at a distance of 14.0±4.5 centiMorgans (cM). A second gene, derived from the cultivar 'Apura', was mapped using a rice doubled-haploid (DH) population. This gene was located on chromosome 12, flanked by RG457 and RG869, at a distance of 13.5+-4.3 cM and 17.7+-4.5 cM, respectively. The newly mapped gene on chromosome 12 may be allelic or closely linked toPi-ta. (=Pi-4(t)), a gene derived from Tetep that was previously reported to be linked to RG869 at a distance of 15.4±4.7 cM. The usefulness of markers linked to blast resistance genes will be discussed in the context of breeding for durable blast resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA