Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 111: 230-246, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37100210

RESUMO

The prefrontal cortex (PFC) provides executive top-down control of a variety of cognitive processes. A distinctive feature of the PFC is its protracted structural and functional maturation throughout adolescence to early adulthood, which is necessary for acquiring mature cognitive abilities. Using a mouse model of cell-specific, transient and local depletion of microglia, which is based on intracerebral injection of clodronate disodium salt (CDS) into the PFC of adolescent male mice, we recently demonstrated that microglia contribute to the functional and structural maturation of the PFC in males. Because microglia biology and cortical maturation are partly sexually dimorphic, the main objective of the present study was to examine whether microglia similarly regulate this maturational process in female mice as well. Here, we show that a single, bilateral intra-PFC injection of CDS in adolescent (6-week-old) female mice induces a local and transient depletion (70 to 80% decrease from controls) of prefrontal microglia during a restricted window of adolescence without affecting neuronal or astrocytic cell populations. This transient microglia deficiency was sufficient to disrupt PFC-associated cognitive functions and synaptic structures at adult age. Inducing transient prefrontal microglia depletion in adult female mice did not cause these deficits, demonstrating that the adult PFC, unlike the adolescent PFC, is resilient to transient microglia deficiency in terms of lasting cognitive and synaptic maladaptations. Together with our previous findings in males, the present findings suggest that microglia contribute to the maturation of the female PFC in a similar way as to the prefrontal maturation occurring in males.


Assuntos
Microglia , Neurônios , Masculino , Feminino , Animais , Seguimentos , Neurônios/fisiologia , Cognição , Córtex Pré-Frontal
2.
BMC Biol ; 20(1): 170, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907861

RESUMO

BACKGROUND: Neuropsychiatric disorders, such as schizophrenia (SZ) and autism spectrum disorder (ASD), are common, multi-factorial and multi-symptomatic disorders. Ample evidence implicates oxidative stress, deficient repair of oxidative DNA lesions and DNA damage in the development of these disorders. However, it remains unclear whether insufficient DNA repair and resulting DNA damage are causally connected to their aetiopathology, or if increased levels of DNA damage observed in patient tissues merely accumulate as a consequence of cellular dysfunction. To assess a potential causal role for deficient DNA repair in the development of these disorders, we behaviourally characterized a mouse model in which CaMKIIa-Cre-driven postnatal conditional knockout (KO) of the core base-excision repair (BER) protein XRCC1 leads to accumulation of unrepaired DNA damage in the forebrain. RESULTS: CaMKIIa-Cre expression caused specific deletion of XRCC1 in the dorsal dentate gyrus (DG), CA1 and CA2 and the amygdala and led to increased DNA damage therein. While motor coordination, cognition and social behaviour remained unchanged, XRCC1 KO in the forebrain caused increased anxiety-like behaviour in males, but not females, as assessed by the light-dark box and open field tests. Conversely, in females but not males, XRCC1 KO caused an increase in learned fear-related behaviour in a cued (Pavlovian) fear conditioning test and a contextual fear extinction test. The relative density of the GABA(A) receptor alpha 5 subunit (GABRA5) was reduced in the amygdala and the dorsal CA1 in XRCC1 KO females, whereas male XRCC1 KO animals exhibited a significant reduction of GABRA5 density in the CA3. Finally, assessment of fast-spiking, parvalbumin-positive (PV) GABAergic interneurons revealed a significant increase in the density of PV+ cells in the DG of male XRCC1 KO mice, while females remained unchanged. CONCLUSIONS: Our results suggest that accumulation of unrepaired DNA damage in the forebrain alters the GABAergic neurotransmitter system and causes behavioural deficits in relation to innate and learned anxiety in a sex-dependent manner. Moreover, the data uncover a previously unappreciated connection between BER deficiency, unrepaired DNA damage in the hippocampus and a sex-specific anxiety-like phenotype with implications for the aetiology and therapy of neuropsychiatric disorders.


Assuntos
Transtorno do Espectro Autista , Extinção Psicológica , Animais , Ansiedade/genética , DNA , Dano ao DNA , Reparo do DNA , Medo/fisiologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Prosencéfalo
3.
Sci Adv ; 8(9): eabi6672, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35235358

RESUMO

The prefrontal cortex (PFC) is a cortical brain region that regulates various cognitive functions. One distinctive feature of the PFC is its protracted adolescent maturation, which is necessary for acquiring mature cognitive abilities in adulthood. Here, we show that microglia, the brain's resident immune cells, contribute to this maturational process. We find that transient and cell-specific deficiency of prefrontal microglia in adolescence is sufficient to induce an adult emergence of PFC-associated impairments in cognitive functions, dendritic complexity, and synaptic structures. While prefrontal microglia deficiency in adolescence also altered the excitatory-inhibitory balance in adult prefrontal circuits, there were no cognitive sequelae when prefrontal microglia were depleted in adulthood. Thus, our findings identify adolescence as a sensitive period for prefrontal microglia to act on cognitive development.

4.
Brain Neurosci Adv ; 5: 23982128211009148, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33997293

RESUMO

Schizophrenia is a severe and clinically heterogenous mental disorder affecting approximately 1% of the population worldwide. Despite tremendous achievements in the field of schizophrenia research, its precise aetiology remains elusive. Besides dysfunctional neuronal signalling, the pathophysiology of schizophrenia appears to involve molecular and functional abnormalities in glial cells, including astrocytes. This article provides a concise overview of the current evidence supporting altered astrocyte activity in schizophrenia, which ranges from findings obtained from post-mortem immunohistochemical analyses, genetic association studies and transcriptomic investigations, as well as from experimental investigations of astrocyte functions in animal models. Integrating the existing data from these research areas strongly suggests that astrocytes have the capacity to critically affect key neurodevelopmental and homeostatic processes pertaining to schizophrenia pathogenesis, including glutamatergic signalling, synaptogenesis, synaptic pruning and myelination. The further elucidation of astrocytes functions in health and disease may, therefore, offer new insights into how these glial cells contribute to abnormal brain development and functioning underlying this debilitating mental disorder.

5.
Lab Anim (NY) ; 50(3): 69-75, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33619409

RESUMO

The designer receptor exclusively activated by designer drugs (DREADD) system is one of the most widely used chemogenetic techniques to modulate the activity of cell populations in the brains of behaving animals. DREADDs are activated by acute or chronic administration of their ligand, clozapine-N-oxide (CNO). There is, however, a current lack of a non-invasive CNO administration technique that can control for drug timing and dosing without inducing substantial distress for the animals. Here, we evaluated whether the recently developed micropipette-guided drug administration (MDA) method, which has been used as a non-invasive and minimally stressful alternative to oral gavages, may be applied to administer CNO orally to activate DREADDs in a dosing- and timing-controlled manner. Unlike standard intraperitoneal injections, administration of vehicle substances via MDA did not elevate plasma levels of the major stress hormone, corticosterone, and did not attenuate exploratory activity in the open field test. At the same time, however, administration of CNO via MDA or intraperitoneally was equally efficient in activating hM3DGq-expressing neurons in the medial prefrontal cortex, as evident by time-dependent increases in mRNA levels of neuronal immediate early genes (cFos, Arc and Zif268) and cFos-immunoreactive neurons. Compared to vehicle given via MDA, oral administration of CNO via MDA was also found to potently increase locomotor activity in mice that express hM3DGq in prefrontal neurons. Taken together, our study confirms the effectiveness of CNO given orally via MDA and provides a novel method for non-stressful, yet well controllable CNO treatments in mouse DREADD systems.


Assuntos
Clozapina , Drogas Desenhadas , Animais , Encéfalo , Camundongos , Neurônios , Óxidos
6.
Mol Psychiatry ; 26(6): 2025-2037, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32398717

RESUMO

The mitochondrial protein, translocator protein (TSPO), is a widely used biomarker of neuroinflammation, but its non-selective cellular expression pattern implies roles beyond inflammatory processes. In the present study, we investigated whether neuronal activity modifies TSPO levels in the adult central nervous system. First, we used single-cell RNA sequencing to generate a cellular landscape of basal TSPO gene expression in the hippocampus of adult (12 weeks old) C57BL6/N mice, followed by confocal laser scanning microscopy to verify TSPO protein in neuronal and non-neuronal cell populations. We then quantified TSPO mRNA and protein levels after stimulating neuronal activity with distinct stimuli, including designer receptors exclusively activated by designer drugs (DREADDs), exposure to a novel environment and acute treatment with the psychostimulant drug, amphetamine. Single-cell RNA sequencing demonstrated a non-selective and multi-cellular gene expression pattern of TSPO at basal conditions in the adult mouse hippocampus. Confocal laser scanning microscopy confirmed that TSPO protein is present in neuronal and non-neuronal (astrocytes, microglia, vascular endothelial cells) cells of cortical (medial prefrontal cortex) and subcortical (hippocampus) brain regions. Stimulating neuronal activity through chemogenetic (DREADDs), physiological (novel environment exposure) or psychopharmacological (amphetamine treatment) approaches led to consistent increases in TSPO gene and protein levels in neurons, but not in microglia or astrocytes. Taken together, our findings show that neuronal activity has the potential to modify TSPO levels in the adult central nervous system. These findings challenge the general assumption that altered TSPO expression or binding unequivocally mirrors ongoing neuroinflammation and emphasize the need to consider non-inflammatory interpretations in some physiological or pathological contexts.


Assuntos
Células Endoteliais , Receptores de GABA , Animais , Camundongos , Microglia , Neurônios , Tomografia por Emissão de Pósitrons , Receptores de GABA/genética
7.
Curr Top Behav Neurosci ; 44: 9-34, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30739307

RESUMO

The hypothesis that the neuroimmune system plays a role in the pathogenesis of different psychiatric disorders, including schizophrenia, depression, and bipolar disease, has attained increasing interest over the past years. Previously thought to have the sole purpose of protecting the central nervous system (CNS) from harmful stimuli, it is now known that the central immune system is critically involved in regulating physiological processes including neurodevelopment, synaptic plasticity, and circuit maintenance. Hence, alterations in microglia - the main immune cell of the CNS - and/or inflammatory factors do not unequivocally connote ongoing neuroinflammation or neuroinflammatory processes per se but rather might signify changes in brain homoeostasis. Despite this, psychiatric research tends to equate functional changes in microglia or alterations in other immune mediators with neuroinflammation. It is the main impetus of this chapter to overcome some of the current misconceptions and possible oversimplifications with respect to neuroinflammation and microglia activity in psychiatry. In order to do so, we will first provide an overview of the basic concepts of neuroinflammation and neuroinflammatory processes. We will then focus on microglia with respect to their ontogeny and immunological and non-immunological functions presenting novel insights on how microglia communicate with other cell types of the central nervous system to ensure proper brain functioning. And lastly, we will delineate the non-immunological functions of inflammatory cytokines in order to address the possible misconception of equating alterations in central cytokine levels with ongoing central inflammation. We hereby hope to help unravel the functional relevance of neuroimmune dysfunctions in psychiatric illnesses and provide future research directions in the field of psychoneuroimmunology.


Assuntos
Encéfalo , Inflamação , Transtornos Mentais , Microglia , Psiquiatria , Encéfalo/imunologia , Encéfalo/patologia , Sistema Nervoso Central , Humanos , Transtornos Mentais/imunologia , Transtornos Mentais/patologia , Microglia/imunologia , Microglia/patologia
8.
Transl Psychiatry ; 8(1): 193, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30237468

RESUMO

Environmental factors are involved in the etiology of autism spectrum disorder (ASD) and may contribute to the raise in its incidence rate. It is currently unknown whether the increasing use of nanoparticles such as titanium dioxide (TiO2 NPs) in consumer products and biomedical applications may play a role in these associations. While nano-sized TiO2 is generally regarded as safe and non-toxic, excessive exposure to TiO2 NPs may be associated with negative health consequences especially when occurring during sensitive developmental periods. To test if prenatal exposure to TiO2 NPs alters fetal development and behavioral functions relevant to ASD, C57Bl6/N dams were subjected to a single intravenous injection of a low (100 µg) or high (1000 µg) dose of TiO2 NPs or vehicle solution on gestation day 9. ASD-related behavioral functions were assessed in the offspring using paradigms that index murine versions of ASD symptoms. Maternal exposure to TiO2 NPs led to subtle and dose-dependent impairments in neonatal vocal communication and juvenile sociability, as well as a dose-dependent increase in prepulse inhibition of the acoustic startle reflex of both sexes. These behavioral alterations emerged in the absence of pregnancy complications. Prenatal exposure to TiO2 NPs did not cause overt fetal malformations or changes in pregnancy outcomes, nor did it affect postnatal growth of the offspring. Taken together, our study provides a first set of preliminary data suggesting that prenatal exposure to nano-sized TiO2 can induce behavioral deficits relevant to ASD and related neurodevelopmental disorders without inducing major changes in physiological development. If extended further, our preclinical findings may provide an incentive for epidemiological studies examining the role of prenatal TiO2 NPs exposure in the etiology of ASD and other neurodevelopmental disorders.


Assuntos
Transtorno do Espectro Autista/induzido quimicamente , Comportamento Animal/efeitos dos fármacos , Exposição Materna/efeitos adversos , Nanopartículas Metálicas/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Titânio/efeitos adversos , Animais , Escala de Avaliação Comportamental , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Inibição Pré-Pulso/efeitos dos fármacos , Reflexo de Sobressalto/efeitos dos fármacos
9.
J Nanobiotechnology ; 16(1): 51, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29859103

RESUMO

Nanomaterial engineering provides an important technological advance that offers substantial benefits for applications not only in the production and processing, but also in the packaging and storage of food. An expanding commercialization of nanomaterials as part of the modern diet will substantially increase their oral intake worldwide. While the risk of particle inhalation received much attention, gaps of knowledge exist regarding possible adverse health effects due to gastrointestinal exposure. This problem is highlighted by pigment-grade titanium dioxide (TiO2), which confers a white color and increased opacity with an optimal particle diameter of 200-300 nm. However, size distribution analyses showed that batches of food-grade TiO2 always comprise a nano-sized fraction as inevitable byproduct of the manufacturing processes. Submicron-sized TiO2 particles, in Europe listed as E 171, are widely used as a food additive although the relevant risk assessment has never been satisfactorily completed. For example, it is not possible to derive a safe daily intake of TiO2 from the available long-term feeding studies in rodents. Also, the use of TiO2 particles in the food sector leads to highest exposures in children, but only few studies address the vulnerability of this particular age group. Extrapolation of animal studies to humans is also problematic due to knowledge gaps as to local gastrointestinal effects of TiO2 particles, primarily on the mucosa and the gut-associated lymphoid system. Tissue distributions after oral administration of TiO2 differ from other exposure routes, thus limiting the relevance of data obtained from inhalation or parenteral injections. Such difficulties and uncertainties emerging in the retrospective assessment of TiO2 particles exemplify the need for a fit-to-purpose data requirement for the future evaluation of novel nano-sized or submicron-sized particles added deliberately to food.


Assuntos
Aditivos Alimentares/toxicidade , Titânio/toxicidade , Animais , Células Cultivadas , Exposição Ambiental , Humanos , Camundongos , Testes de Toxicidade
10.
Brain Behav Immun ; 73: 51-65, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29870753

RESUMO

Activation of the maternal immune system during pregnancy is a well-established risk factor for neuropsychiatric disease in the offspring, yet, the underlying mechanisms leading to altered brain function remain largely undefined. Microglia, the resident immune cells of the brain, are key to adequate development of the central nervous system (CNS), and are prime candidates to mediate maternal immune activation (MIA)-induced brain abnormalities. As such, the effects of MIA on the immunological phenotype of microglia has been widely investigated. However, contradicting results due to differences in read-out and methodological approaches impede final conclusions on MIA-induced microglial alterations. The aim of this review is to critically discuss the evidence for an activated microglial phenotype upon MIA.


Assuntos
Microglia/fisiologia , Transtornos do Neurodesenvolvimento/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Animais , Comportamento Animal/fisiologia , Encéfalo/imunologia , Modelos Animais de Doenças , Feminino , Sistema Imunitário/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Mães , Transtornos do Neurodesenvolvimento/fisiopatologia , Poli I-C/farmacologia , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/metabolismo , Ratos
11.
Curr Top Behav Neurosci ; 40: 389-410, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29626336

RESUMO

Accumulating evidence suggests that the pathophysiology or schizophrenia involves alterations in immune functions, both peripherally and centrally. Immunopsychiatric research has provided a number of candidate biomarkers that could aid estimating the risk of developing schizophrenia and/or predicting its clinical course or outcomes. This chapter summarizes the findings of immune dysfunctions along the clinical course of schizophrenia and discusses their potential value as predictive, trait or state biomarkers. Given the convergence of findings deriving from immunology, epidemiology, and genetics, the possibility of identifying immune-based biomarkers of schizophrenia seems realistic. Despite these promises, however, the field has realized that immune dysfunctions in schizophrenia may be as heterogeneous as the disorder itself. While challenging for psychiatric nosology, this heterogeneity offers the opportunity to define patient subgroups based on the presence or absence of distinct immune dysfunctions. This stratification may be clinically relevant for schizophrenic patients as it may help establishing personalized add-on therapies or preventive interventions with immunomodulating drugs.


Assuntos
Biomarcadores , Sistema Imunitário , Esquizofrenia , Progressão da Doença , Humanos , Sistema Imunitário/fisiopatologia , Esquizofrenia/imunologia
13.
J Neuroinflammation ; 12: 221, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26602365

RESUMO

BACKGROUND: Prenatal exposure to infection and/or inflammation is increasingly recognized to play an important role in neurodevelopmental brain disorders. It has recently been postulated that prenatal immune activation, especially when occurring during late gestational stages, may also induce pathological brain aging via sustained effects on systemic and central inflammation. Here, we tested this hypothesis using an established mouse model of exposure to viral-like immune activation in late pregnancy. METHODS: Pregnant C57BL6/J mice on gestation day 17 were treated with the viral mimetic polyriboinosinic-polyribocytidilic acid (poly(I:C)) or control vehicle solution. The resulting offspring were first tested using cognitive and behavioral paradigms known to be sensitive to hippocampal damage, after which they were assigned to quantitative analyses of inflammatory cytokines, microglia density and morphology, astrocyte density, presynaptic markers, and neurotrophin expression in the hippocampus throughout aging (1, 5, and 22 months of age). RESULTS: Maternal poly(I:C) treatment led to a robust increase in inflammatory cytokine levels in late gestation but did not cause persistent systemic or hippocampal inflammation in the offspring. The late prenatal manipulation also failed to cause long-term changes in microglia density, morphology, or activation, and did not induce signs of astrogliosis in pubescent, adult, or aged offspring. Despite the lack of persistent inflammatory or glial anomalies, offspring of poly(I:C)-exposed mothers showed marked and partly age-dependent deficits in hippocampus-regulated cognitive functions as well as impaired hippocampal synaptophysin and brain-derived neurotrophic factor (BDNF) expression. CONCLUSIONS: Late prenatal exposure to viral-like immune activation in mice causes hippocampus-related cognitive and synaptic deficits in the absence of chronic inflammation across aging. These findings do not support the hypothesis that this form of prenatal immune activation may induce pathological brain aging via sustained effects on systemic and central inflammation. We further conclude that poly(I:C)-based prenatal immune activation models are reliable in their effectiveness to induce (hippocampal) neuropathology across aging, but they appear unsuited for studying the role of chronic systemic or central inflammation in brain aging.


Assuntos
Envelhecimento/imunologia , Envelhecimento/patologia , Hipocampo/patologia , Mediadores da Inflamação/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Envelhecimento/metabolismo , Animais , Feminino , Hipocampo/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo
14.
Eur J Neurosci ; 39(2): 165-75, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24325300

RESUMO

Biochemical analysis of central nervous system proteins and nucleic acids requires fresh-tissue homogenates, whereas immunohistochemistry usually is performed in sections prepared from perfusion-fixed tissue. Post-mortem immersion-fixation is possible, but largely impairs morphological preservation and protein antigenicity. Here, we present a simple, fast and versatile protocol allowing concurrent biochemical and immunohistochemical analysis, including pre-embedding immunoelectron microscopy, using tissue from the same animal. The protocol includes a brief transcardiac perfusion with ice-cold, oxygenated and glucose-supplemented artificial cerebrospinal fluid to maintain brain tissue alive, prior to isolation of regions of interest, followed by homogenisation for biochemistry or immersion-fixation for immunohistochemistry. We provide several examples demonstrating that this protocol allows optimal biochemical and morphological analysis, characterised with optimal sensitivity and preservation of tissue structure, along with a reduction of artefacts typically seen in perfusion-fixed tissue. This protocol should find widespread applications for combining analytical methods in tissue from the same animal, thereby reducing the number of mice required for a given experiment.


Assuntos
Química Encefálica , Encéfalo/ultraestrutura , Imuno-Histoquímica/métodos , Animais , Western Blotting , Encéfalo/metabolismo , Moléculas de Adesão Celular Neuronais/análise , Proteínas da Matriz Extracelular/análise , Perfilação da Expressão Gênica/métodos , Glutamato Descarboxilase/genética , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Imunoeletrônica/métodos , Proteínas do Tecido Nervoso/análise , Neurônios/química , Neurônios/citologia , Perfusão , Reação em Cadeia da Polimerase em Tempo Real , Receptores de GABA-A/análise , Proteína Reelina , Serina Endopeptidases/análise , Frações Subcelulares/química , Preservação de Tecido
15.
Acta Neuropathol Commun ; 1: 27, 2013 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24252415

RESUMO

BACKGROUND: Reelin and its downstream signaling members are important modulators of actin and microtubule cytoskeleton dynamics, a fundamental prerequisite for proper neurodevelopment and adult neuronal functions. Reductions in Reelin levels have been suggested to contribute to Alzheimer's disease (AD) pathophysiology. We have previously reported an age-related reduction in Reelin levels and its accumulation in neuritic varicosities along the olfactory-limbic tracts, which correlated with cognitive impairments in aged mice. Here, we aimed to investigate whether a similar Reelin-associated neuropathology is observed in the aged human hippocampus and whether it correlated with dementia status. RESULTS: Our immunohistochemical stainings revealed the presence of N- and C-terminus-containing Reelin fragments in corpora amylacea (CAm), aging-associated spherical deposits. The density of these deposits was increased in the molecular layer of the subiculum of AD compared to non-demented individuals. Despite the limitation of a small sample size, our evaluation of several neuronal and glial markers indicates that the presence of Reelin in CAm might be related to aging-associated impairments in neuronal transport leading to accumulation of organelles and protein metabolites in neuritic varicosities, as previously suggested by the findings and discussions in rodents and primates. CONCLUSIONS: Our results indicate that aging- and disease-associated changes in Reelin levels and proteolytic processing might play a role in the formation of CAm by altering cytoskeletal dynamics. However, its presence may also be an indicator of a degenerative state of neuritic compartments.


Assuntos
Doença de Alzheimer/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Serina Endopeptidases/metabolismo , Idoso de 80 Anos ou mais , Doença de Alzheimer/líquido cefalorraquidiano , Astrócitos/metabolismo , Western Blotting , Moléculas de Adesão Celular Neuronais/líquido cefalorraquidiano , Proteínas da Matriz Extracelular/líquido cefalorraquidiano , Feminino , Imunofluorescência , Humanos , Imuno-Histoquímica , Masculino , Microglia/metabolismo , Proteínas do Tecido Nervoso/líquido cefalorraquidiano , Proteína Reelina , Serina Endopeptidases/líquido cefalorraquidiano
16.
J Neuroinflammation ; 9: 151, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22747753

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most prevalent form of age-related dementia, and its effect on society increases exponentially as the population ages. Accumulating evidence suggests that neuroinflammation, mediated by the brain's innate immune system, contributes to AD neuropathology and exacerbates the course of the disease. However, there is no experimental evidence for a causal link between systemic inflammation or neuroinflammation and the onset of the disease. METHODS: The viral mimic, polyriboinosinic-polyribocytidilic acid (PolyI:C) was used to stimulate the immune system of experimental animals. Wild-type (WT) and transgenic mice were exposed to this cytokine inducer prenatally (gestation day (GD)17) and/or in adulthood. Behavioral, immunological, immunohistochemical, and biochemical analyses of AD-associated neuropathologic changes were performed during aging. RESULTS: We found that a systemic immune challenge during late gestation predisposes WT mice to develop AD-like neuropathology during the course of aging. They display chronic elevation of inflammatory cytokines, an increase in the levels of hippocampal amyloid precursor protein (APP) and its proteolytic fragments, altered Tau phosphorylation, and mis-sorting to somatodendritic compartments, and significant impairments in working memory in old age. If this prenatal infection is followed by a second immune challenge in adulthood, the phenotype is strongly exacerbated, and mimics AD-like neuropathologic changes. These include deposition of APP and its proteolytic fragments, along with Tau aggregation, microglia activation and reactive gliosis. Whereas Aß peptides were not significantly enriched in extracellular deposits of double immune-challenged WT mice at 15 months, they dramatically increased in age-matched immune-challenged transgenic AD mice, precisely around the inflammation-induced accumulations of APP and its proteolytic fragments, in striking similarity to the post-mortem findings in human patients with AD. CONCLUSION: Chronic inflammatory conditions induce age-associated development of an AD-like phenotype in WT mice, including the induction of APP accumulations, which represent a seed for deposition of aggregation-prone peptides. The PolyI:C mouse model therefore provides a unique tool to investigate the molecular mechanisms underlying the earliest pathophysiological changes preceding fibrillary Aß plaque deposition and neurofibrillary tangle formations in a physiological context of aging. Based on the similarity between the changes in immune-challenged mice and the development of AD in humans, we suggest that systemic infections represent a major risk factor for the development of AD.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Idoso de 80 Anos ou mais , Doença de Alzheimer/imunologia , Animais , Encéfalo/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Poli I-C/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...