Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(16): 9345-9359, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35383785

RESUMO

Here, we present new models to fit small angle X-ray scattering (SAXS) data for the characterization of ion tracks in polymers. Ion tracks in polyethylene terephthalate (PET), polycarbonate (PC), polyimide (PI) and polymethyl methacrylate (PMMA) were created by swift heavy ion irradiation using 197Au and 238U with energies between 185 MeV and 2.0 GeV. Transmission SAXS measurements were performed at the Australian Synchrotron. SAXS data were analysed using two new models that describe the tracks by a cylindrical structure composed of a highly damaged core with a gradual transition to the undamaged material. First, we investigate the 'Soft Cylinder Model', which assumes a smooth function to describe the transition region by a gradual change in density from a core to a matrix. As a simplified and computational less expensive version of the 'Soft Cylinder Model', the 'Core Transition Model' was developed to enable fast fitting. This model assumes a linear increase in density from the core to the matrix. Both models yield superior fits to the experimental SAXS data compared with the often-used simple 'Hard Cylinder Model' assuming a constant density with an abrupt transition.

2.
Phys Chem Chem Phys ; 23(26): 14231-14241, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34159988

RESUMO

In situ small angle X-ray scattering (SAXS) measurements of ion track etching in polycarbonate foils are used to directly monitor the selective dissolution of ion tracks with high precision, including the early stages of etching. Detailed information about the track etching kinetics and size, shape, and size distribution of an ensemble of nanopores is obtained. Time resolved measurements as a function of temperature and etchant concentration show that the pore radius increases almost linearly with time for all conditions and the etching process can be described by an Arrhenius law. The radial etching shows a power law dependency on the etchant concentration. An increase in the etch rate with increasing temperature or concentration of the etchant reduces the penetration of the etchant into the polymer but does not affect the pore size distribution. The in situ measurements provide an estimate for the track etch rate, which is found to be approximately three orders of magnitude higher than the radial etch rate. The measurement methodology enables new experiments studying membrane fabrication and performance in liquid environments.

3.
Sci Rep ; 5: 13661, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26334136

RESUMO

Hybrid particles are of great significance in terms of their adjustable optical, electronic, magnetic, thermal and mechanical properties. As a novel technique, laser ablation in liquids (LAL) is famous for its precursor-free, "clean" synthesis of hybrid particles with various materials. Till now, almost all the LAL-generated particles originate from the nucleation-growth mechanism. Seed-growth of particles similar to chemical methods seems difficult to be achieved by LAL. Here, we not only present novel patch-joint football-like AgGe microspheres with a diameter in the range of 1 ~ 7 µm achievable by laser ablation in distilled water but also find direct evidences of their layered seed growth mechanism. Many critical factors contribute to the formation of AgGe microspheres: fast laser-generated plasma process provide an excellent condition for generating large amount of Ge and Ag ions/atoms, their initial nucleation and galvanic replacement reaction, while cavitation bubble confinement plays an important role for the increase of AgGe nuclei and subsequent layered growth in water after bubble collapse. Driven by work function difference, Ge acts as nucleation agent for silver during alloy formation. This new seed-growth mechanism for LAL technique opens new opportunities to develop a large variety of novel hybrid materials with controllable properties.

4.
Ultramicroscopy ; 129: 30-5, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23545434

RESUMO

For conventional samples and measurement geometries the spatial resolution of energy dispersive X-ray spectroscopy is limited by a tear drop shaped emission volume to about 1 µm. This restriction can be substantially improved using thin samples and high acceleration voltage. In this contribution the spatial resolution of energy dispersive X-ray spectroscopy in a scanning electron microscope using thin lamella samples is investigated. At an acceleration voltage of 30 kV, an edge resolution down to Δdedge = 40 ± 10 nm is observed performing linescans across an interface, using an 80 nm thin sample prepared from a GaAs/AlAs-heterostructure. Furthermore, Monte-Carlo simulations of pure elements ranging from sodium to mercury are performed for different sample thicknesses. From the simulations we can derive a simple empirical formula to predict the spatial resolution as a function of sample thickness.

5.
Rev Sci Instrum ; 83(11): 114904, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23206086

RESUMO

One key but complex parameter in the chemical vapor synthesis (CVS) of nanoparticles is the time temperature profile of the gas phase, which determines particle characteristics such as size (distribution), morphology, microstructure, crystal, and local structure. Relevant for the CVS process and for the corresponding particle characteristics is, however, not the T(t)-profile generated by an external energy source such as a hot wall or microwave reactor but the temperature of the gas carrying reactants and products (particles). Due to a complex feedback of the thermodynamic and chemical processes in the reaction volume with the external energy source, it is very difficult to predict the real gas phase temperature field from the externally applied T(t)-profile. Therefore, a measurement technique capable to determine the temperature distribution of the gas phase under process conditions is needed. In this contribution, we demonstrate with three proof of principle experiments the use of laser induced fluorescence thermometry to investigate the CVS process under realistic conditions.

6.
Nano Lett ; 12(5): 2587-94, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22533700

RESUMO

We dope CdSe nanocrystals with Ag impurities and investigate their optical and electrical properties. Doping leads not only to dramatic changes but surprising complexity. The addition of just a few Ag atoms per nanocrystal causes a large enhancement in the fluorescence, reaching efficiencies comparable to core-shell nanocrystals. While Ag was expected to be a substitutional acceptor, nonmonotonic trends in the fluorescence and Fermi level suggest that Ag changes from an interstitial (n-type) to a substitutional (p-type) impurity with increased doping.

7.
J Nanosci Nanotechnol ; 11(9): 7956-61, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22097512

RESUMO

Direct reduction of nitrogen oxides is still a challenge. Strong efforts have been made in developing noble and transition metal catalysts on microporous support materials such as active carbons or zeolites. However, the required activation energy and low conversion rates still limit its breakthrough. Furthermore, infiltration of such microporous matrix materials is commonly performed by wet chemistry routes. Deep infiltration and homogeneous precursor distribution are often challenging due to precursor viscosity or electrostatic shielding and may be inhibited by pore clogging. Gas phase infiltration, as an alternative, can resolve viscosity issues and may contribute to homogeneous infiltration of precursors. In the present work new catalysts based on active carbon substrates were synthesized via chemical vapor infiltration. Iron oxide nano clusters were deposited in the microporous matrix material. Detailed investigation of produced catalysts included nitrogen oxide adsorption, X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Catalytic activity was studied in a recycle flow reactor by time-resolved mass spectrometry at a temperature of 423 K. The infiltrated active carbons showed very homogeneous deposition of iron oxide nano clusters in the range of below 12 to 19 nm, depending on the amount of infiltrated precursor. The specific surface area was not excessively reduced, nor was the pore size distribution changed compared to the original substrate. Catalytic nitrogen oxides conversion was detected at temperatures as low as 423 K.

8.
Phys Rev Lett ; 105(17): 176804, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-21231068

RESUMO

We demonstrate the possibility to influence the shape of the wave functions in semiconductor quantum dots by the application of an external magnetic field B(z). The states of the so-called p shell, which show distinct orientations along the crystal axes for B(z) = 0, can be modified to become more and more circularly symmetric with an increasing field. Their changing probability density can be monitored using magnetotunneling wave function mapping. Calculations of the magnetotunneling signals are in good agreement with the experimental data and explain the different tunneling maps of the p(+) and p⁻ states as a consequence of the different sign of their respective phase factors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...