Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Cell Biol ; 21(22): 7629-40, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11604499

RESUMO

The yeast NuA4 complex is a histone H4 and H2A acetyltransferase involved in transcription regulation and essential for cell cycle progression. We identify here a novel subunit of the complex, Yng2p, a plant homeodomain (PHD)-finger protein homologous to human p33/ING1, which has tumor suppressor activity and is essential for p53 function. Mass spectrometry, immunoblotting, and immunoprecipitation experiments confirm the stable stoichiometric association of this protein with purified NuA4. Yeast cells harboring a deletion of the YNG2 gene show severe growth phenotype and have gene-specific transcription defects. NuA4 complex purified from the mutant strain is low in abundance and shows weak histone acetyltransferase activity. We demonstrate conservation of function by the requirement of Yng2p for p53 to function as a transcriptional activator in yeast. Accordingly, p53 interacts with NuA4 in vitro and in vivo, an interaction reminiscent of the p53-ING1 physical link in human cells. The growth defect of Delta yng2 cells can be rescued by the N-terminal part of the protein, lacking the PHD-finger. While Yng2 PHD-finger is not required for p53 interaction, it is necessary for full expression of the p53-responsive gene and other NuA4 target genes. Transcriptional activation by p53 in vivo is associated with targeted NuA4-dependent histone H4 hyperacetylation, while histone H3 acetylation levels remain unchanged. These results emphasize the essential role of the NuA4 complex in the control of cell proliferation through gene-specific transcription regulation. They also suggest that regulation of mammalian cell proliferation by p53-dependent transcriptional activation functions through recruitment of an ING1-containing histone acetyltransferase complex.


Assuntos
Acetiltransferases/metabolismo , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Proteínas de Plantas/fisiologia , Proteínas de Saccharomyces cerevisiae , Ativação Transcricional , Proteínas Supressoras de Tumor , Acetilação , Sequência de Aminoácidos , Proteínas de Ciclo Celular , Divisão Celular , Inibidor de Quinase Dependente de Ciclina p21 , Ciclinas/genética , Proteínas de Ligação a DNA , Genes Supressores de Tumor , Histona Acetiltransferases , Proteínas de Homeodomínio/metabolismo , Humanos , Proteína 1 Inibidora do Crescimento , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Proteínas Nucleares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Proteínas , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transativadores/genética , Transativadores/metabolismo , Transativadores/fisiologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/fisiologia
3.
J Biol Chem ; 276(5): 3484-91, 2001 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-11036083

RESUMO

In Drosophila, the MSL complex is required for the dosage compensation of X-linked genes in males and contains a histone acetyltransferase, MOF. A point mutation in the MOF acetyl-CoA-binding site results in male-specific lethality. Yeast Esa1p, a MOF homolog, is essential for cell cycle progression and is the catalytic subunit of the NuA4 acetyltransferase complex. Here we report that NuA4 purified from yeast with a point mutation in the acetyl-CoA-binding domain of Esa1p exhibits a strong decrease in histone acetyltransferase activity, yet has no effect on growth. We demonstrate that Eaf3p (Esa1p-associated factor-3 protein), a yeast protein homologous to the Drosophila dosage compensation protein MSL3, is also a stable component of the NuA4 complex. Unlike other subunits of the complex, it is not essential, and the deletion mutant has no growth phenotype. NuA4 purified from the mutant strain has a decreased apparent molecular mass, but retains wild-type levels of histone H4 acetyltransferase activity. The EAF3 deletion and the ESA1 mutation lead to a decrease in PHO5 gene expression; the EAF3 deletion also significantly reduces HIS4 and TRP4 expressions. These results, together with those previously obtained with both the MSL and NuA4 complexes, underscore the importance of targeted histone H4 acetylation for the gene-specific activation of transcription.


Assuntos
Acetiltransferases/genética , Acetiltransferases/metabolismo , Proteínas de Drosophila , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Fatores de Transcrição/química , Sequência de Aminoácidos , Animais , Divisão Celular/fisiologia , Drosophila/química , Marcação de Genes , Ácido Glutâmico/genética , Glicina/genética , Histona Acetiltransferases , Dados de Sequência Molecular , Saccharomyces cerevisiae/crescimento & desenvolvimento
4.
Mol Cell ; 5(6): 927-37, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10911987

RESUMO

NuA4 is an essential histone H4/H2A acetyltransferase complex that interacts with activators and stimulates transcription in vitro. We have identified three novel NuA4 subunits: Act3/Arp4, an actin-related protein implicated in epigenetic control of transcription, Act1, and Epl1, a protein homologous to Drosophila Enhancer of Polycomb. Act3/Arp4 binds nucleosomes in vitro and is required for NuA4 integrity in vivo. Mutations in ACT3 and acetyltransferase-encoding ESA1 cause gene-specific transcription defects. Accordingly, NuA4 is localized in precise loci within the nucleus and does not overlap with the silent chromatin marker Sir3. These data along with the known epigenetic roles of Act3/Arp4 and homologs of Epl1 and Esa1 strongly support an essential role for chromatin structure modification by NuA4 in transcription regulation in vivo.


Assuntos
Acetiltransferases/química , Acetiltransferases/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Histona Acetiltransferases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transcrição Gênica/genética , Acetiltransferases/genética , Actinas/química , Actinas/genética , Actinas/metabolismo , Sequência de Aminoácidos , Cromatina/genética , Cromatina/metabolismo , Imunofluorescência , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Essenciais/genética , Genes Fúngicos/genética , Histonas/metabolismo , Substâncias Macromoleculares , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/metabolismo
5.
Mol Gen Genet ; 256(4): 397-405, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9393437

RESUMO

In the yeast Saccharomyces cerevisiae mutations in the genes encoding the transcription factors Pdr1p and Pdr3p are known to be associated with pleiotropic drug resistance mediated by the overexpression of the efflux pumps Pdr5p, Snq2p, and Yor1p. Mutagenesis of PDR3 was used to induce multidrug resistance phenotypes and independent pdr3 mutants were isolated and characterized. DNA sequence analysis revealed seven different pdr3 alleles with mutations in the N-terminal region of PDR3. The pdr3 mutants were semidominant and conferred different drug resistance patterns on host strains deleted either for PDR3 or for PDR3 and PDR1. Transactivation experiments proved that the mutated forms of Pdr3p induced increased activation of the PDR3, PDR5, and SNQ2 promoters. The amino acid changes encoded by five pdr3 mutant alleles were found to occur in a short protein segment (amino acids 252-280), thus revealing a regulatory domain. This region may play an important role in protein-DNA or protein-protein interactions during activation by Pdr3p. Moreover, this hot spot for gain-of-function mutations overlaps two structural motifs, MI and MII, recently proposed to be conserved in the large family of Zn2Cys6 transcription factors.


Assuntos
Proteínas de Ligação a DNA/genética , Resistência Microbiana a Medicamentos/genética , Proteínas Fúngicas/genética , Genes Reguladores , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/efeitos dos fármacos , Fatores de Transcrição/genética , Transportadores de Cassetes de Ligação de ATP/genética , Alelos , Sequência de Aminoácidos , Antifúngicos/farmacologia , Sítios de Ligação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/fisiologia , Genes Dominantes , Genes Fúngicos , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutagênese , Fenótipo , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Transativadores/genética , Fatores de Transcrição/química , Fatores de Transcrição/fisiologia , Transcrição Gênica , Ativação Transcricional
6.
Mol Cell Biol ; 17(9): 5453-60, 1997 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9271421

RESUMO

In the yeast Saccharomyces cerevisiae, multidrug resistance to unrelated chemicals can result from overexpression of ATP-binding cassette (ABC) transporters such as Pdr5p, Snq2p, and Yor1p. Expression of these genes is under the control of two homologous zinc finger-containing transcription regulators, Pdr1p and Pdr3p. Here, we describe the isolation, by an in vivo screen, of two new Pdr1p-Pdr3p target genes: HXT11 and HXT9. HXT11 and HXT9, encoding nearly identical proteins, have a high degree of identity to monosaccharide transporters of the major facilitator superfamily (MFS). In this study, we show that the HXT11 product, which allows glucose uptake in a glucose permease mutant (rag1) strain of Kluyveromyces lactis, is also involved in the pleiotropic drug resistance process. Loss of HXT11 and/or HXT9 confers cycloheximide, sulfomethuron methyl, and 4-NQO (4-nitroquinoline-N-oxide) resistance. Conversely, HXT11 overexpression increases sensitivity to these drugs in the wild-type strain, an effect which is more pronounced in a strain having both PDR1 and PDR3 deleted. These data show that the two putative hexose transporters Hxt11p and Hxt9p are transcriptionally regulated by the transcription factors Pdr1p and Pdr3p, which are known to regulate the production of ABC transporters required for drug resistance in yeast. We thus demonstrate the existence of genetic interactions between genes coding for two classes of transporters (ABC and MFS) to control the multidrug resistance process.


Assuntos
Proteínas de Ligação a DNA/genética , Resistência a Múltiplos Medicamentos/genética , Proteínas de Transporte de Monossacarídeos/genética , Transativadores/genética , Fatores de Transcrição/genética , Dedos de Zinco/genética , Expressão Gênica , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Transcrição Gênica
7.
Mol Microbiol ; 20(1): 109-17, 1996 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-8861209

RESUMO

Pleiotropic drug resistance (PDR) in the yeast Saccharomyces cerevisiae can arise from overexpression of ATP-binding cassette (ABC) efflux pumps such as Pdr5 and Snq2. Mutations in the transcription factor genes PDR1 and PDR3 are also associated with PDR. We show here that a pdr1-3 mutant exhibits a PDR phenotype, including elevated resistance to the mutagen 4-nitroquinoline-N-oxide, a known substrate for Snq2 but not for Pdr5. Northern analysis and immunoblotting demonstrated that the SNQ2 gene is 10-fold overexpressed in a pdr1-3 gain-of-function mutant strain, whereas Snq2 expression is severely reduced in a delta pdr1 deletion strain, and almost abolished in a delta pdr1 delta pdr3 double disruptant when compared to the PDR1 strain. However, expression of the Ste6 a-factor pheromone transporter, another yeast ABC transporter not associated with PDR, is unaffected in pdr1-3 mutant cells and in strains carrying delta pdr1, delta pdr3, or delta pdr1 delta pdr3 deletions. Finally, DNA footprint analysis revealed that the SNQ2 promoter contains three binding sites for Pdr3. Our results identify SNQ2 as a novel target for both Pdr1 and Pdr3, and demonstrate that the PDR phenotype of a pdr1-3 mutant strain results from overexpression of more than one ABC drug-efflux pump.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Ligação a DNA/metabolismo , Resistência Microbiana a Medicamentos/genética , Proteínas Fúngicas/genética , Glicoproteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , 4-Nitroquinolina-1-Óxido/farmacologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antifúngicos/farmacologia , Sítios de Ligação , Cicloeximida/farmacologia , Proteínas de Ligação a DNA/genética , Resistência a Múltiplos Medicamentos/genética , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutagênicos/farmacologia , Mutação , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Transativadores/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...