Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 1075, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658325

RESUMO

In this article, a full numerical method to study the squeezing procedure through second harmonic generation process is proposed. The method includes complex nonlinear coupling coefficient, phase mismatch, and pump depletion. Attention has been also paid to the effects of accumulated noises in this work. The final form of the numerical formula seems to be much simpler than the analytical solutions previously reported. The function of this numerical method shows that it works accurately for different mechanisms of squeezed state generations and does not suffer from instabilities usually encountered even for non-uniform, coarse steps. The proposed method is used to examine the squeezing procedure in an engineered nonlinear plasmonic waveguide. The results show that using the nonlinear plasmonic waveguide, it is possible to generate the squeezed states for the pump and the second harmonic modes with high efficiency in a propagation length as short as 2 mm which is much shorter than the needed length for the traditional nonlinear lithium niobate- based optical waveguides being of the order of 100 mm. This new method of squeezed states generation may find applications in optical communication with a noise level well below the standard quantum limit, in quantum teleportation, and in super sensitive interferometry.

2.
Sci Rep ; 13(1): 1534, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707531

RESUMO

Low-noise integrated all-optical wavelength converters that can be operated in short pulse regime are essential tools to overcome contention resolution in a modern communication network, based on wavelength division multiplexing. Any imperfect functionality in such devices causes non-ideal optical power transfer to the converted data pulses. All imperfections during the preparation and operation of the wavelength converters can be addressed to the waveguide inhomogeneity which distorts data pulses to be converted. This paper reports different waveguide inhomogeneity effects on the pulse distortion while using periodically poled lithium niobate waveguide as wavelength converters. Three types of [Formula: see text]-based nonlinear optical processes, including second harmonic generation, difference frequency generation, and cascaded second harmonic generation/difference frequency generation are numerically studied to show that any constant, linear, and quadratic waveguide inhomogeneity causes short pulse (down to 1 ns) distortion in such wavelength converters. In addition, it is shown that the reconstruction of [Formula: see text]-shaped generated pulses is possible, when suitable upside-down quadratic variations of obtained inhomogeneity are deliberately induced in the waveguide. Notably, for pulsed second harmonic generation, the generated pulse can be compressed using an upside-down quadratic phase mismatch.

3.
Appl Opt ; 57(29): 8543-8548, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30461921

RESUMO

Wavelength division multiplexing (WDM) using higher-order spatial modes such as orbital angular momentum (OAM) through a channelized bandwidth provides enhanced capacity communication systems. An all-optical wavelength converter is a key function in implemented WDM networks to overcome the wavelength contentions. In addition, a polarization converter provides efficient control on the state of polarization for encoded data channels in the optical networks. This paper proposes a novel versatile-designed integrated optical device with Ycut ridge lithium niobate photonic wire configuration that acts as a wavelength or polarization converter for data modulated on OAM. It is schemed in such a way that generates decomposed guided modes with a new wavelength and polarization via cascaded second harmonic generation/difference frequency generation (cSHG/DFG) and type-II DFG nonlinear interactions, respectively, where their desired relative phase is achieved by a linear electro-optical effect in the successive phase shifter part. The low loss ≤0.09 dB/cm, high purity (≥94%), and low voltage (≤4 V) of the high-speed proposed modulator enable its compatible operation in commercial wireless and fiber-based polarization-multiplexed WDM communication systems.

4.
Sci Rep ; 8(1): 15495, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341372

RESUMO

The adjustable propagation length enhancement of the surface plasmon polariton (SPP) mode under the effects of the initial relative phase (ψ0) between interacting waves in difference frequency generation (DFG) based optical parametric amplification (OPA) are numerically considered. The waveguide is a silver coated PPLN planar waveguide. Obtained results indicate ultra long propagation length for the SPP mode could be achieved via manipulation of ψ0 in exact quasi phase matching (QPM) case up to 30 mm for initial pump intensity about 66 MW/cm for degenerate DFG (dDFG). For chirped QPM by mitigating the high depletion of the pump intensity, it is possible to enhance the SPP propagation length up to 43 mm for initial pump intensity about 135 MW/cm. In this case ψ0 does not affect the SPP propagation length except around a narrow range of unsuitable phases. The unsuitable phase is [Formula: see text] for exact QPM but is pump dependent for chirped QPM case. Using this unsuitable phase is the key parameter to the SPP propagation length enhancement via controlling ψ0. In this case with a high pump intensity, the pump and the SPP modes interact at longer distances which leads to the SPP propagation length enhancement.

5.
Phys Rev Lett ; 119(18): 180510, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29219590

RESUMO

Transformations on quantum states form a basic building block of every quantum information system. From photonic polarization to two-level atoms, complete sets of quantum gates for a variety of qubit systems are well known. For multilevel quantum systems beyond qubits, the situation is more challenging. The orbital angular momentum modes of photons comprise one such high-dimensional system for which generation and measurement techniques are well studied. However, arbitrary transformations for such quantum states are not known. Here we experimentally demonstrate a four-dimensional generalization of the Pauli X gate and all of its integer powers on single photons carrying orbital angular momentum. Together with the well-known Z gate, this forms the first complete set of high-dimensional quantum gates implemented experimentally. The concept of the X gate is based on independent access to quantum states with different parities and can thus be generalized to other photonic degrees of freedom and potentially also to other quantum systems.

6.
Opt Lett ; 42(21): 4267-4270, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29088139

RESUMO

For convenient measurements in many applications, wavelength alterations should be translated to the change in intensity of the output light. In this Letter, a novel method based on monitoring the Moiré pattern using a simple dispersive planoconvex lens (chromatic aberration) for wavelength alteration measurement is reported. Due to the chromatic aberration of the lens, different wavelengths have different magnifications. This causes rotation in the Moiré pattern when the wavelength of the incident light is changed. It is shown that by measuring this rotation it is possible to measure the wavelength alterations. The experimental results obtained from four different laser sources with 450, 532, 630, and 632.8 nm wavelengths show total Moiré pattern rotation of about 31.5°, which shows good theory-experimental agreement. This method is simple and more reliable, and might find wide applications in spectrometry, optical sensors, and dispersion measurements.

7.
Sci Rep ; 7(1): 3835, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28630486

RESUMO

Recent studies demonstrated that the optical channels encoded by Orbital Angular Momentum (OAM) are capable candidates for improving the next generation of communication systems. OAM states can enhance the capacity and security of high-dimensional communication channels in both classical and quantum regimes based on optical fibre and free space. Hence, fast and precise control of the beams encoded by OAM can provide their commercial applications in the compatible communication networks. Integrated optical devices are good miniaturized options to perform this issue. This paper proposes a numerically verified integrated high-frequency electro-optical modulator for manipulation of the guided modes encoded in both OAM and polarization states. The proposed modulator is designed as an electro-optically active Lithium Niobate (LN) core photonic wire with silica as its cladding in a LN on Insulator (LNOI) configuration. It consists of two successive parts; a phase shifter to reverse the rotation handedness of the input OAM state and a polarization converter to change the horizontally polarized OAM state to the vertically polarized one. It is shown that all four possible output polarization-OAM encoded states can be achieved with only 6 V and 7 V applied voltages to the electrodes in the two parts of the modulator.

8.
Opt Lett ; 42(8): 1564-1567, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28409799

RESUMO

The propagation length enhancement of surface plasmon polariton (SPP) waves could lead to practical applications. This Letter proposes the numerically verified phase-sensitive nonlinear χ(2)-based optical parametric amplification (OPA) for ultralong propagation of a SPP wave within an ultrawide bandwidth. The strong nonlinear interaction between the SPP mode and the hybrid guided mode, which limits the length enhancement, is mitigated in a silver-coated linearly chirped periodically poled lithium niobate planar waveguide via slowly phase-matched OPA. Obtained results indicate an ultralong propagation length for a SPP mode of about 4 cm when a 135 MW/cm pump intensity is launched. The acceptance bandwidth of the amplified SPP shows its dependency on the pump intensity; for a pump intensity range between 70 and 135 MW/cm, the acceptance bandwidth is still ultrawide, varying from 28 to 18 nm, respectively.

9.
Opt Lett ; 35(17): 2867-9, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20808351

RESUMO

We demonstrate 160 Gbit/s return-to-zero (RZ) differential quarternary phase-shift keying (DQPSK) signal transmission over a 110 km single-mode fiber by taking advantage of mid-span optical phase conjugation (OPC). The technique is based on nonlinear wavelength conversion by cascaded second harmonic and difference frequency generation in a Ti:PPLN waveguide. Error-free operation with a negligible optical signal-to-noise ratio penalty for the signal after the OPC transmission without and with polarization scrambling was achieved. The results also show the polarization insensitivity of the OPC system using a polarization diversity scheme.

10.
Opt Express ; 18(13): 14225-31, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20588556

RESUMO

The efficiency of wavelength conversion by cascaded second harmonic generation / difference frequency generation (cSHG/DFG) in Ti:PPLN waveguides can be considerably improved by using a double-pass configuration. However, due to the wavelength dependent phase change by the dielectric folding mirror phase compensation is required to maintain an optimum power transfer. We experimentally investigated three different approaches and improved the wavelength conversion efficiency up to 9 dB in comparison with the single-pass configuration.


Assuntos
Nióbio , Óptica e Fotônica/instrumentação , Óptica e Fotônica/métodos , Óxidos , Desenho de Equipamento , Luz , Modelos Teóricos , Dinâmica não Linear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...