Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 309(2): L147-57, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26001776

RESUMO

Human surfactant protein (SP) A (SP-A), an innate immunity molecule, is encoded by two genes, SFTPA1 and SFTPA2. The 5'-untranslated splice variant of SP-A2 (ABD), but not SP-A1 (AD), contains exon B (eB). eB is an enhancer for transcription and translation and contains cis-regulatory elements. Specific trans-acting factors, including 14-3-3, bind eB. The 14-3-3 protein family contains seven isoforms that have been found by mass spectrometry in eB electromobility shift assays (Noutsios et al. Am J Physiol Lung Cell Mol Physiol 304: L722-L735, 2013). We used four different approaches to investigate whether 14-3-3 isoforms bind directly to eB. 1) eB RNA pulldown assays showed that 14-3-3 isoforms specifically bind eB. 2) RNA electromobility shift assay complexes were formed using purified 14-3-3 isoforms ß, γ, ε, η, σ, and τ, but not isoform ζ, with wild-type eB RNA. 3 and 4) RNA affinity chromatography assays and surface plasmon resonance analysis showed that 14-3-3 isoforms ß, γ, ε, η, σ, and τ, but not isoform ζ, specifically and directly bind eB. Inhibition of 14-3-3 isoforms γ, ε, η, and τ/θ with shRNAs in NCI-H441 cells resulted in downregulation of SP-A2 levels but did not affect SP-A1 levels. However, inhibition of 14-3-3 isoform σ was correlated with lower levels of SP-A1 and SP-A2. Inhibition of 14-3-3 isoform ζ/δ, which does not bind eB, had no effect on expression levels of SP-A1 and SP-A2. In conclusion, the 14-3-3 protein family affects differential regulation of SP-A1 and SP-A2 by binding directly to SP-A2 5'-UTR mRNA.


Assuntos
Proteínas 14-3-3/metabolismo , Regiões 5' não Traduzidas/genética , Éxons/genética , Proteína A Associada a Surfactante Pulmonar/genética , RNA Mensageiro/metabolismo , Proteínas 14-3-3/antagonistas & inibidores , Proteínas 14-3-3/genética , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Isoformas de Proteínas , Proteína A Associada a Surfactante Pulmonar/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Sequências Reguladoras de Ácido Nucleico , Transcrição Gênica , Células Tumorais Cultivadas
2.
Swiss Med Wkly ; 144: w14036, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25539126

RESUMO

Childhood asthma is an umbrella of multifactorial diseases with similar clinical features such as mast cell and eosinophil infiltration causing airway hyper responsiveness, inflammation, and airway obstruction. There are various factors that are implicated in childhood asthma pathogenesis. A combined contribution of genetic predisposition, environmental insults, and epigenetic changes account for polarisation of the immune system towards T helper (Th) type 2 cell responses that include production of pro-inflammatory cytokines, IgE, and eosinophil infiltrates, shown to associate with asthma. Environmental cues in prenatal, perinatal, and early childhood seem to determine development of asthma incidence or protection against it. Mode of birth delivery, use of antibiotics, oxidative stress, exposure to tobacco smoke and an industrialised lifestyle are significant contributors to childhood asthma exacerbation. Environmental stimuli such as exposure to maternal antibodies through breast milk, and certain early infections favour Th1 cell responses, leading to the production of anti-inflammatory cytokines that protect from asthma. Aside from the Th cell responses the role of innate immunity in the context of alveolar macrophages, dendritic cells, and surfactant protein A (SP-A) and SP-D is discussed. SP-A and SP-D enhance pathogen phagocytosis and cytokine production by alveolar macrophages, bind and clear pathogens, and interact with dendritic cells to mediate adaptive immunity responses. Further study of the interactions between genetic variants of genes of interest (SP-A and SP-D) and the environment may provide valuable knowledge about the underlying mechanisms of various interactions that differentially affect asthma susceptibility, disease severity, and reveal potential points for therapeutic interventions.


Assuntos
Asma/etiologia , Asma/imunologia , Meio Ambiente , Imunidade Inata/imunologia , Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Asma/epidemiologia , Aleitamento Materno , Dieta , Epigenômica , Feminino , Predisposição Genética para Doença/epidemiologia , Humanos , Recém-Nascido Prematuro , Estilo de Vida , Polimorfismo Genético , Gravidez , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Fatores de Proteção , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína D Associada a Surfactante Pulmonar/metabolismo , Fatores de Risco , Distribuição por Sexo , Fatores Socioeconômicos
3.
Exp Lung Res ; 40(7): 354-66, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25058539

RESUMO

Human surfactant protein A (SP-A) plays an important role in surfactant metabolism and lung innate immunity. SP-A is synthesized and secreted by alveolar type II (ATII) cells, one of the two cell types of the distal lung epithelium (ATII and ATI). We have shown that miRNA interactions with sequence polymorphisms on the SP-A mRNA 3'UTRs mediate differential expression of SP-A1 and SP-A2 gene variants in vitro. In the present study, we describe a physiologically relevant model to study miRNA regulation of SP-A in human ATII. For these studies, we purified and cultured human ATII on an air-liquid interface matrix (A/L) or plastic wells without matrix (P). Gene expression analyses confirmed that cells cultured in A/L maintained the ATII phenotype for over 5 days, whereas P-cultured cells differentiated to ATI. When we transfected ATII with siRNAs to inhibit the expression of Drosha, a critical effector of miRNA maturation, the levels of SP-A mRNA and protein increased in a time dependent manner. We next characterized cultured ATII and ATI by studying expression of 1,066 human miRNAs using miRNA PCR arrays. We detected expression of >300 miRNAs with 24 miRNAs differentially expressed in ATII versus ATI, 12 of which predicted to bind SP-A 3'UTRs, indicating that these may be implicated in SP-A downregulation in ATI. Thus, miRNAs not only affect SP-A expression, but also may contribute to the maintenance of the ATII cell phenotype and/or the trans-differentiation of ATII to ATI cells, and may represent new molecular markers that distinguish ATII and ATI.


Assuntos
Alvéolos Pulmonares/metabolismo , Proteína A Associada a Surfactante Pulmonar/genética , Proteína A Associada a Surfactante Pulmonar/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Regiões 3' não Traduzidas/genética , Diferenciação Celular/genética , Células Cultivadas , Células Epiteliais/metabolismo , Epitélio/metabolismo , Humanos , MicroRNAs/genética , Fenótipo , Projetos Piloto , RNA Mensageiro/genética , RNA Interferente Pequeno/genética
4.
J Mol Biochem ; 2(1): 40-55, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23687636

RESUMO

The first half of the surfactant protein B (SP-B) gene intron 4 is a CA-repeat-rich region that contains 11 motifs. To study the role of this region on SP-B mRNA splicing, minigenes were generated by systematic removal of motifs from either the 5' or 3' end. These were transfected in CHO cells to study their splicing efficiency. The latter was determined as the ratio of completely to incompletely spliced SP-B RNA. Our results indicate that SP-B intron 4 motifs differentially affect splicing. Motifs 8 and 9 significantly enhanced and reduced splicing of intron 4, respectively. RNA mobility shift assays performed with a Motif 8 sequence that contains a CAUC cis-element and cell extracts resulted in a RNA:protein shift that was lost upon mutation of the element. Furthermore, in silico analysis of mRNA secondary structure stability for minigenes with and without motif 8 indicated a correlation between mRNA stability and splicing ratio. We conclude that differential loss of specific intron 4 motifs results in one or more of the following: a) altered splicing, b) differences in RNA stability and c) changes in secondary structure. These, in turn, may affect SP-B content in lung health or disease.

5.
Am J Physiol Lung Cell Mol Physiol ; 304(11): L722-35, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23525782

RESUMO

Human surfactant protein A, an innate immunity molecule, is encoded by two genes: SFTPA1 (SP-A1) and SFTPA2 (SP-A2). The 5' untranslated (5'UTR) splice variant of SP-A2 (ABD), but not of SP-A1 (AD), contains exon B (eB), which is an enhancer for transcription and translation. We investigated whether eB contains cis-regulatory elements that bind trans-acting factors in a sequence-specific manner as well as the role of the eB mRNA secondary structure. Binding of cytoplasmic NCI-H441 proteins to wild-type eB, eB mutant, AD, and ABD 5'UTR mRNAs were studied by RNA electromobility shift assays (REMSAs). The bound proteins were identified by mass spectroscopy and specific antibodies (Abs). We found that 1) proteins bind eB mRNA in a sequence-specific manner, with two cis-elements identified within eB to be important; 2) eB secondary structure is necessary for binding; 3) mass spectroscopy and specific Abs in REMSAs identified 14-3-3 proteins to bind (directly or indirectly) eB and the natural SP-A2 (ABD) splice variant but not the SP-A1 (AD) splice variant; 4) other ribosomal and cytoskeletal proteins, and translation factors, are also present in the eB mRNA-protein complex; 5) knockdown of 14-3-3 ß/α isoform resulted in a downregulation of SP-A2 expression. In conclusion, proteins including the 14-3-3 family bind two cis-elements within eB of hSP-A2 mRNA in a sequence- and secondary structure-specific manner. Differential regulation of SP-A1 and SP-A2 is mediated by the 14-3-3 protein family as well as by a number of other proteins that bind UTRs with or without eB mRNA.


Assuntos
Proteínas 14-3-3/metabolismo , Éxons/genética , Proteína A Associada a Surfactante Pulmonar/genética , RNA Mensageiro/metabolismo , Regiões 5' não Traduzidas/fisiologia , Sequência de Bases , Linhagem Celular Tumoral , Humanos , Estrutura Secundária de Proteína
6.
Vet Res Commun ; 36(1): 7-20, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22021041

RESUMO

In the present study forty-four Greek endemic strains of Br. melitensis and three reference strains were genotyped by Multi locus Variable Number Tandem Repeat (ML-VNTR) analysis based on an eight-base pair tandem repeat sequence that was revealed in eight loci of Br. melitensis genome. The forty-four strains were discriminated from the vaccine strain Rev-1 by Restriction Fragment Length Polymorphism (RFLP) and Denaturant Gradient Gel Electrophoresis (DGGE). The ML-VNTR analysis revealed that endemic, reference and vaccine strains are genetically closely related, while most of the loci tested (1, 2, 4, 5 and 7) are highly polymorphic with Hunter-Gaston Genetic Diversity Index (HGDI) values in the range of 0.939 to 0.775. Analysis of ML-VNTRs loci stability through in vitro passages proved that loci 1 and 5 are non stable. Therefore, vaccine strain can be discriminated from endemic strains by allele's clusters of loci 2, 4, 6 and 7. RFLP and DGGE were also employed to analyse omp2 gene and reveled different patterns among Rev-1 and endemic strains. In RFLP, Rev-1 revealed three fragments (282, 238 and 44 bp), while endemic strains two fragments (238 and 44 bp). As for DGGE, the electrophoretic mobility of Rev-1 is different from the endemic strains due to heterologous binding of DNA chains of omp2a and omp2b gene. Overall, our data show clearly that it is feasible to genotype endemic strains of Br. melitensis and differentiate them from vaccine strain Rev-1 with ML-VNTR, RFLP and DGGE techniques. These tools can be used for conventional investigations in brucellosis outbreaks.


Assuntos
Vacinas Bacterianas/imunologia , Brucella melitensis/classificação , Brucelose/veterinária , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/prevenção & controle , Polimorfismo Genético , Animais , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana/veterinária , Vacinas Bacterianas/classificação , Vacinas Bacterianas/genética , Vacinas Bacterianas/isolamento & purificação , Sequência de Bases , Brucella melitensis/genética , Brucella melitensis/imunologia , Brucella melitensis/isolamento & purificação , Brucelose/microbiologia , Brucelose/prevenção & controle , Bovinos , Eletroforese em Gel de Gradiente Desnaturante , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Genótipo , Grécia , Repetições Minissatélites , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Filogenia , Polimorfismo de Fragmento de Restrição , Porinas/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...