Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Endod J ; 56(12): 1432-1445, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37712904

RESUMO

BACKGROUND: The mechanism of action of root resorption in a permanent tooth can be classified as infection-related (e.g., microbial infection) or non-infection-related (e.g., sterile damage). Infection induced root resorption occurs due to bacterial invasion. Non-infection-related root resorption stimulates the immune system through a different mechanism. OBJECTIVES: The aim of this narrative review is to describe the pathophysiologic process of non-infection-related inflammatory processes involved in root resorption of permanent teeth. METHODS: A literature search on root resorption was conducted using Scopus (PubMed and Medline) and Google Scholar databases to highlight the pathophysiology of bone and root resorption in non-infection-related situations. The search included key words covering the relevant category. It included in vitro and in vivo studies, systematic reviews, case series, reviews, and textbooks in English. Conference proceedings, lectures and letters to the editor were excluded. RESULTS: Three types of root resorption are related to the non-infection mechanism of action, which includes surface resorption due to either trauma or excessive orthodontic forces, external replacement resorption and external cervical resorption. The triggers are usually damage associated molecular patterns and hypoxia conditions. During this phase macrophages and clastic cells act to eliminate the damaged tissue and bone, eventually enabling root resorption and bone repair as part of wound healing. DISCUSSION: The resorption of the root occurs during the inflammatory phase of wound healing. In this phase, damaged tissues are recognized by macrophages and neutrophiles that secrete interlaukines such as TNF-α, IL-1, IL-6, IL-8. Together with the hypoxia condition that accelarates the secretion of growth factors, the repair of the damaged perioduntiom, including damaged bone, is initiated. If the precementum and cementoblast are injured, root resorption can occur. CONCLUSIONS: Wound healing exhibits different patterns of action that involves immune stimulation in a bio-physiological activity, that occurs in the proper sequence, with overlapping phases. Two pathologic conditions, DAMPs and hypoxia, can activate the immune cells including clastic cells, eliminating damaged tissue and bone. Under certain conditions, root resorption occurs as a side effect.


Assuntos
Reabsorção da Raiz , Humanos , Reabsorção da Raiz/etiologia , Dentição Permanente , Hipóxia
2.
Ann Surg Oncol ; 30(6): 3701-3711, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36840861

RESUMO

BACKGROUND: Resection of soft-tissue sarcomas from the adductor compartment is associated with significant complications. Free/pedicled flaps often are used for wound closure, but their effect on healing is unclear. We compared wound complications, oncologic, and functional outcomes for patients undergoing flap reconstruction or primary closure following resection of adductor sarcomas. METHODS: A total of 177 patients underwent resection of an adductor sarcoma with primary closure (PrC) or free/pedicled flap reconstruction (FR). Patient, tumor, and treatment characteristics were compared, as well as wound complications, oncologic, and functional outcomes (TESS/MSTS87/MSTS93). To examine the relative benefit of flap reconstruction, number needed to treat (NNT) was calculated. RESULTS: In total, 143 patients underwent PrC and 34 had FR, 68% of which were pedicled. There were few differences in demographic, tumor, or treatment characteristics. No significant difference was found in the rate of wound complications. Length of stay was significantly longer in FR (18 days vs. PrC 8 days; p < 0.01). Oncologic and functional outcomes were similar over 5 years follow-up. Uncomplicated wound healing occurred more often in FR compared with PrC for tumors with ≥15 cm (NNT = 8.4) or volumes ≥ 800 ml (NNT = 8.4). Tumors ≤ 336 ml do not benefit from a flap, whereas those > 600 ml are 1.5 times more likely to heal uneventfully after flap closure. CONCLUSIONS: Although flap use prolonged hospitalization, it decreased wound healing complications for larger tumors, and in all sized tumors, it demonstrated similar functional and oncologic outcomes to primary closure. Our size-based treatment criteria can help to identify patients with large adductor sarcomas who could benefit from flap reconstruction. LEVEL OF EVIDENCE III: (Retrospective cohort study).


Assuntos
Retalhos de Tecido Biológico , Procedimentos de Cirurgia Plástica , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Coxa da Perna/cirurgia , Coxa da Perna/patologia , Estudos Retrospectivos , Retalhos de Tecido Biológico/cirurgia , Sarcoma/cirurgia , Sarcoma/patologia , Neoplasias de Tecidos Moles/cirurgia , Neoplasias de Tecidos Moles/patologia
3.
Cell Death Dis ; 13(9): 820, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153321

RESUMO

Molecular understanding of osteogenic differentiation (OD) of human bone marrow-derived mesenchymal stem cells (hBMSCs) is important for regenerative medicine and has direct implications for cancer. We report that the RNF4 ubiquitin ligase is essential for OD of hBMSCs, and that RNF4-deficient hBMSCs remain as stalled progenitors. Remarkably, incubation of RNF4-deficient hBMSCs in conditioned media of differentiating hBMSCs restored OD. Transcriptional analysis of RNF4-dependent gene signatures identified two secreted factors that act downstream of RNF4 promoting OD: (1) BMP6 and (2) the BMP6 co-receptor, RGMb (Dragon). Indeed, knockdown of either RGMb or BMP6 in hBMSCs halted OD, while only the combined co-addition of purified RGMb and BMP6 proteins to RNF4-deficient hBMSCs fully restored OD. Moreover, we found that the RNF4-RGMb-BMP6 axis is essential for survival and tumorigenicity of osteosarcoma and therapy-resistant melanoma cells. Importantly, patient-derived sarcomas such as osteosarcoma, Ewing sarcoma, liposarcomas, and leiomyosarcomas exhibit high levels of RNF4 and BMP6, which are associated with reduced patient survival. Overall, we discovered that the RNF4~BMP6~RGMb axis is required for both OD and tumorigenesis.


Assuntos
Proteína Morfogenética Óssea 6 , Moléculas de Adesão Celular Neuronais , Osteogênese , Osteossarcoma , Fatores de Transcrição , Células da Medula Óssea/metabolismo , Proteína Morfogenética Óssea 6/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Humanos , Ligases/metabolismo , Proteínas Nucleares/metabolismo , Osteossarcoma/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitinas/metabolismo
4.
Cancers (Basel) ; 14(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35565308

RESUMO

Radiation-associated sarcoma of the pelvis and/or sacrum (RASB) is a rare but challenging disease process associated with a poor prognosis. We hypothesized that patients with RASB would have worse surgical and oncologic outcomes than patients diagnosed with primary pelvic or sacral bone sarcomas. This was a retrospective, multi-institution, comparative analysis. We reviewed surgically treated patients from multiple tertiary care centers who were diagnosed with a localized RASB. We also identified a comparison group including all patients diagnosed with a primary localized pelvic or sacral osteosarcoma/spindle cell sarcoma of bone (POPS). There were 35 patients with localized RASB and 73 patients with POPS treated with surgical resection. Patients with RASB were older than those with POPS (57 years vs. 38 years, p < 0.001). Patients with RASB were less likely to receive chemotherapy (71% for RASB vs. 90% for POPS, p = 0.01). Seventeen percent of patients with RASB died in the perioperative period (within 90 days of surgery) as compared to 4% with POPS (p = 0.03). Five-year disease-specific survival (DSS) (31% vs. 54% p = 0.02) was worse for patients with RASB vs. POPS. There was no difference in 5-year local recurrence free survival (LRFS) or metastasis free survival (MFS). RASB and POPS present challenging disease processes with poor oncologic outcomes. Rates of perioperative mortality and 5-year DSS are worse for RASB when compared to POPS.

5.
Rambam Maimonides Med J ; 12(3)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34270404

RESUMO

Mutations in FGF23, KL, and GALNT3 have been identified as the cause for the development of hyperphosphatemic familial tumoral calcinosis (HFTC). Patients with HFTC typically present in childhood or adolescence with periarticular soft tissue deposits that eventually progress to disrupt normal joint articulation. Mutations in the GALNT3 gene were shown to account for the hyperphosphatemic state in both HFTC and hyperostosis-hyperphosphatemia syndrome (HHS), the latter characterized by bone involvement. We present the case of a patient of a Druze ethnic origin with known HFTC that presented to our department with the first documented case of pathologic fracture occurring secondary to the disease. Our report introduces this new phenotypic presentation, suggests a potential role for prophylactic bone screening, and highlights the need for preconception genetic screening in selected populations.

8.
Cell Rep ; 16(12): 3388-3400, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27653698

RESUMO

Ubiquitylation regulates signaling pathways critical for cancer development and, in many cases, targets proteins for degradation. Here, we report that ubiquitylation by RNF4 stabilizes otherwise short-lived oncogenic transcription factors, including ß-catenin, Myc, c-Jun, and the Notch intracellular-domain (N-ICD) protein. RNF4 enhances the transcriptional activity of these factors, as well as Wnt- and Notch-dependent gene expression. While RNF4 is a SUMO-targeted ubiquitin ligase, protein stabilization requires the substrate's phosphorylation, rather than SUMOylation, and binding to RNF4's arginine-rich motif domain. Stabilization also involves generation of unusual polyubiquitin chains and docking of RNF4 to chromatin. Biologically, RNF4 enhances the tumor phenotype and is essential for cancer cell survival. High levels of RNF4 mRNA correlate with poor survival of a subgroup of breast cancer patients, and RNF4 protein levels are elevated in 30% of human colon adenocarcinomas. Thus, RNF4-dependent ubiquitylation translates transient phosphorylation signal(s) into long-term protein stabilization, resulting in enhanced oncoprotein activation.


Assuntos
Proteínas Nucleares/metabolismo , Oncogenes/fisiologia , Estabilidade Proteica , Fatores de Transcrição/metabolismo , Humanos , Ubiquitinação
9.
Cell Rep ; 16(2): 419-431, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27346348

RESUMO

PI3K activity determines positive and negative selection of B cells, a key process for immune tolerance and B cell maturation. Activation of PI3K is balanced by phosphatase and tensin homolog (Pten), the PI3K's main antagonistic phosphatase. Yet, the extent of feedback regulation between PI3K activity and Pten expression during B cell development is unclear. Here, we show that PI3K control of this process is achieved post-transcriptionally by an axis composed of a transcription factor (c-Myc), a microRNA (miR17-92), and Pten. Enhancing activation of this axis through overexpression of miR17-92 reconstitutes the impaired PI3K activity for positive selection in CD19-deficient B cells and restores most of the B cell developmental impairments that are evident in CD19-deficient mice. Using a genetic approach of deletion and complementation, we show that the c-Myc/miR17-92/Pten axis critically controls PI3K activity and the sensitivity of immature B cells to negative selection imposed by activation-induced cell death.


Assuntos
Antígenos CD19/genética , Linfócitos B/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Animais , Antígenos CD19/metabolismo , Morte Celular , Células Cultivadas , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Teste de Complementação Genética , Heterozigoto , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo
10.
J Clin Invest ; 124(5): 2009-22, 2014 05.
Artigo em Inglês | MEDLINE | ID: mdl-24713654

RESUMO

A single G protein-coupled receptor (GPCR) can activate multiple signaling cascades based on the binding of different ligands. The biological relevance of this feature in immune regulation has not been evaluated. The chemokine-binding GPCR CXCR3 is preferentially expressed on CD4+ T cells, and canonically binds 3 structurally related chemokines: CXCL9, CXCL10, and CXCL11. Here we have shown that CXCL10/CXCR3 interactions drive effector Th1 polarization via STAT1, STAT4, and STAT5 phosphorylation, while CXCL11/CXCR3 binding induces an immunotolerizing state that is characterized by IL-10(hi) (Tr1) and IL-4(hi) (Th2) cells, mediated via p70 kinase/mTOR in STAT3- and STAT6-dependent pathways. CXCL11 binds CXCR3 with a higher affinity than CXCL10, suggesting that CXCL11 has the potential to restrain inflammatory autoimmunity. We generated a CXCL11-Ig fusion molecule and evaluated its use in the EAE model of inflammatory autoimmune disease. Administration of CXCL11-Ig during the first episode of relapsing EAE in SJL/J mice not only led to rapid remission, but also prevented subsequent relapse. Using GFP-expressing effector CD4+ T cells, we observed that successful therapy was associated with reduced accumulation of these cells at the autoimmune site. Finally, we showed that very low doses of CXCL11 rapidly suppress signs of EAE in C57BL/6 mice lacking functional CXCL11.


Assuntos
Quimiocina CXCL11/imunologia , Encefalomielite Autoimune Experimental/imunologia , Linfócitos T Reguladores/imunologia , Animais , Quimiocina CXCL11/genética , Quimiocina CXCL11/farmacologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Camundongos , Camundongos Knockout , Receptores CXCR3/genética , Receptores CXCR3/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacologia , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/imunologia , Linfócitos T Reguladores/patologia , Células Th1/imunologia , Células Th1/patologia
11.
J Immunol ; 185(6): 3239-47, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20709952

RESUMO

Rag-1 and Rag-2 are essential for the construction of the BCR repertoire. Regulation of Rag gene expression is tightly linked with BCR expression and signaling during B cell development. Earlier studies have shown a major role of the PI(3)K/Akt pathway in regulating the transcription of Rag genes. In this study, by using the 38c13 murine B cell lymphoma we show that transcription of Rag genes is also regulated by the MEK/ERK pathways, and that both pathways additively coordinate in this regulation. The additive effect is observed for both ligand-dependent (upon BCR ligation) and ligand independent (tonic) signals. However, whereas the PI(3)K/Akt regulation of Rag transcription is mediated by Foxo1, we show in this study that the MEK/ERK pathway coordinates with the regulation of Rag by controlling the phosphorylation and turnover of E47 and its consequential binding to the Rag enhancer regions. Our results suggest that the PI(3)K and MEK/ERK pathways additively coordinate in the regulation of Rag transcription in an independent manner.


Assuntos
Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Genes RAG-1/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Fosfatidilinositol 3-Quinase/fisiologia , Transcrição Gênica/imunologia , Animais , Subpopulações de Linfócitos B/enzimologia , Linhagem Celular Tumoral , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Reagentes de Ligações Cruzadas/metabolismo , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Ligantes , Camundongos , Ligação Proteica/genética , Ligação Proteica/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
12.
Blood ; 110(12): 3968-77, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17712048

RESUMO

Life and death of peripheral lymphocytes is strictly controlled to maintain physiologic levels of T and B cells. Activation-induced cell death (AICD) is one mechanism to delete superfluous lymphocytes by restimulation of their immunoreceptors and it depends partially on the CD95/CD95L system. Recently, we have shown that hematopoietic progenitor kinase 1 (HPK1) determines T-cell fate. While full-length HPK1 is essential for NF-kappaB activation in T cells, the C-terminal fragment of HPK1, HPK1-C, suppresses NF-kappaB and sensitizes toward AICD by a yet undefined cell death pathway. Here we show that upon IL-2-driven expansion of primary T cells, HPK1 is converted to HPK1-C by a caspase-3 activity below the threshold of apoptosis induction. HPK1-C selectively blocks induction of NF-kappaB-dependent antiapoptotic Bcl-2 family members but not of the proapoptotic Bcl-2 family member Bim. Interestingly, T and B lymphocytes from HPK1-C transgenic mice undergo AICD independently of the CD95/CD95L system but involving caspase-9. Knock down of HPK1/HPK1-C or Bim by small interfering RNA shows that CD95L-dependent and HPK1/HPK1-C-dependent cell death pathways complement each other in AICD of primary T cells. Our results define HPK1-C as a suppressor of antiapoptotic Bcl-2 proteins and provide a molecular basis for our understanding of CD95L-independent AICD of lymphocytes.


Assuntos
Apoptose/fisiologia , Linfócitos B/enzimologia , Caspase 3/metabolismo , Caspase 9/metabolismo , Proteína Ligante Fas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Linfócitos T/enzimologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Humanos , Interleucina-2/metabolismo , Ativação Linfocitária/fisiologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína/genética , Proteínas Proto-Oncogênicas/metabolismo , Linfócitos T/citologia , Receptor fas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...