Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 13(15): 5584-5596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908736

RESUMO

Rationale: The passage of antibodies through the blood-brain barrier (BBB) and the blood-tumoral barrier (BTB) is determinant not only to increase the immune checkpoint inhibitors efficacy but also to monitor prognostic and predictive biomarkers such as the programmed death ligand 1 (PD-L1) via immunoPET. Although the involvement of neonatal Fc receptor (FcRn) in antibody distribution has been demonstrated, its function at the BBB remains controversial, while it is unknown at the BTB. In this context, we assessed FcRn's role by pharmacokinetic immunoPET imaging combined with focused ultrasounds (FUS) using unmodified and FcRn low-affinity IgGs targeting PD-L1 in a preclinical orthotopic glioblastoma model. Methods: Transcranial FUS were applied over the whole brain in mice shortly before injecting the anti-PD-L1 IgG 89Zr-DFO-C4 or its FcRn low-affinity mutant 89Zr-DFO-C4Fc-MUT in a syngeneic glioblastoma murine model (GL261-GFP). Brain uptake was measured from PET scans acquired up to 7 days post-injection. Kinetic modeling was performed to compare the brain kinetics of both C4 formats. Results: FUS efficiently enhanced the delivery of both C4 radioligands in the brain with high reproducibility. 89Zr-DFO-C4Fc-MUT mean concentrations in the brain reached a significant uptake of 3.75±0.41%ID/cc with FUS against 1.92±0.45%ID/cc without, at 1h post-injection. A substantial and similar entry of both C4 radioligands was observed at a rate of 0.163±0.071 mL/h/g of tissue during 10.4±4.6min. The impaired interaction with FcRn of 89Zr-DFO-C4Fc-MUT significantly decreased the efflux constant from the healthy brain tissue to plasma compared with non-mutated IgG. Abolishing FcRn interaction allows determining the target engagement related to the specific binding as soon as 12h post-injection. Conclusion: Abolishing Fc-FcRn interaction confers improved kinetic properties to 89Zr-DFO-C4Fc-MUT for immunoPET imaging. FUS-aided BBB/BTB disruption enables quantitative imaging of PD-L1 expression by glioblastoma tumors within the brain.


Assuntos
Antígeno B7-H1 , Glioblastoma , Animais , Camundongos , Anticorpos Monoclonais/química , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Glioblastoma/diagnóstico por imagem , Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , Tomografia por Emissão de Pósitrons/métodos , Reprodutibilidade dos Testes , Zircônio/química
2.
Pharmacol Ther ; 250: 108518, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37619931

RESUMO

The therapeutic management of gliomas remains particularly challenging. Brain tumors present multiple obstacles that make therapeutic innovation complex, mainly due to the presence of blood-tumor and blood-brain barriers (BTB and BBB, respectively) which prevent penetration of anticancer agents into the brain parenchyma. Focused ultrasound-mediated BBB disruption (FUS-BBBD) provides a physical method for non-invasive, local, and reversible BBB disruption. The safety of this technique has been demonstrated in small and large animal models. This approach promises to enhance drug delivery into the brain tumor and therefore to improve survival outcomes by repurposing existing drugs. Several clinical trials continue to be initiated in the last decade. In this review, we provide an overview of the rationale behind the use of FUS-BBBD in gliomas and summarize the preclinical studies investigating different approaches (free drugs, drug-loaded microbubbles and drug-loaded nanocarriers) in combination with this technology in in vivo glioma models. Furthermore, we discuss the current state of clinical trials and devices developed and review the challenges to overcome for clinical use of FUS-BBBD in glioma therapy.

3.
J Control Release ; 361: 483-492, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37562557

RESUMO

The P-glycoprotein (P-gp/ABCB1) is a major efflux transporter which impedes the brain delivery of many drugs across the blood-brain barrier (BBB). Focused ultrasound with microbubbles (FUS) enables BBB disruption, which immediate and delayed impact on P-gp function remains unclear. Positron emission tomography (PET) imaging using the radiolabeled substrate [11C]metoclopramide provides a sensitive and translational method to study P-gp function at the living BBB. A FUS protocol was devised in rats to induce a substantial and targeted disruption of the BBB in the left hemisphere. BBB disruption was confirmed by the Evan's Blue extravasation test or the minimally-invasive contrast-enhanced MRI. The expression of P-gp was measured 24 h or 48 h after FUS using immunostaining and fluorescence microscopy. The brain kinetics of [11C]metoclopramide was studied by PET at baseline, and both immediately or 24 h after FUS, with or without half-maximum P-gp inhibition (tariquidar 1 mg/kg). In each condition (n = 4-5 rats per group), brain exposure of [11C]metoclopramide was estimated as the area-under-the-curve (AUC) in regions corresponding to the sonicated volume in the left hemisphere, and the contralateral volume. Kinetic modeling was performed to estimate the uptake clearance ratio (R1) of [11C]metoclopramide in the sonicated volume relative to the contralateral volume. In the absence of FUS, half-maximum P-gp inhibition increased brain exposure (+135.0 ± 12.9%, p < 0.05) but did not impact R1 (p > 0.05). Immediately after FUS, BBB integrity was selectively disrupted in the left hemisphere without any detectable impact on the brain kinetics of [11C]metoclopramide compared with the baseline group (p > 0.05) or the contralateral volume (p > 0.05). 24 h after FUS, BBB integrity was fully restored while P-gp expression was maximally down-regulated (-45.0 ± 4.5%, p < 0.001) in the sonicated volume. This neither impacted AUC nor R1 in the FUS + 24 h group (p > 0.05). Only when P-gp was inhibited with tariquidar were the brain exposure (+130 ± 70%) and R1(+29.1 ± 15.4%) significantly increased in the FUS + 24 h/tariquidar group, relative to the baseline group (p < 0.001). We conclude that the brain kinetics of [11C]metoclopramide specifically depends on P-gp function rather than BBB integrity. Delayed FUS-induced down-regulation of P-gp function can be detected. Our results suggest that almost complete down-regulation is required to substantially enhance the brain delivery of P-gp substrates.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Barreira Hematoencefálica , Animais , Ratos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Metoclopramida/metabolismo
4.
Nanoscale ; 15(30): 12574-12585, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37455598

RESUMO

Tumor-specific drug delivery is a major challenge for the pharmaceutical industry. Nanocarrier systems have been widely investigated to increase and control drug delivery to the heterogeneous tumor microenvironment. Classically, the uptake of nanocarriers by solid tumor tissues is mainly mediated by the enhanced permeability and retention effect (EPR). This EPR effect depends on the tumor type, its location, the physicochemical properties of the carriers, and the blood perfusion of the tumoral lesions. The main goal of this study was to evaluate in vivo tumor uptake of micelle carriers, assisted by microbubble/ultrasound sonoporation. Micelles were tracked using bi-modal imaging techniques to precisely localize both the nanocarrier and its payload. Micelles were loaded with a near infrared fluorophore and radiolabeled with zirconium-89. Their pharmacokinetics, biodistribution and passive tumor targeting properties were evaluated in a subcutaneous glioblastoma (U-87 MG) mouse model using optical and PET imaging. Finally, accumulation and diffusion into the tumor micro-environment was investigated under microbubble-assisted sonoporation, which helped homogenize the delivery of the micelles. The in vivo experiments showed a good correlation between optical and PET images and demonstrated the stability of the micelles in biological media, their high and long-term retention in the tumors and their clearance through the hepato-biliary pathway. This study demonstrates that bi-modal imaging techniques are powerful tools for the development of new nanocarriers and that sonoporation is a promising method to homogenize nanomedicine delivery to tumors.


Assuntos
Glioma , Micelas , Camundongos , Animais , Distribuição Tecidual , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Glioma/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Portadores de Fármacos/química , Microambiente Tumoral
5.
Phys Med Biol ; 68(18)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37369229

RESUMO

Focused ultrasound (FUS) is a non-invasive and highly promising method for targeted and reversible blood-brain barrier permeabilization. Numerous preclinical studies aim to optimize the localized delivery of drugs using this method in rodents and non-human primates. Several clinical trials have been initiated to treat various brain diseases in humans using simultaneous BBB permeabilization and drug injection. This review presents the state of the art ofin vitroandin vivocavitation control algorithms for BBB permeabilization using microbubbles (MB) and FUS. Firstly, we describe the different cavitation states, their physical significance in terms of MB behavior and their translation into the spectral composition of the backscattered signal. Next, we report the different indexes calculated and used during the ultrasonic monitoring of cavitation. Finally, the differentin vitroandin vivocavitation control strategies described in the literature are presented and compared.


Assuntos
Barreira Hematoencefálica , Encefalopatias , Animais , Humanos , Retroalimentação , Microbolhas , Ultrassom/métodos , Sistemas de Liberação de Medicamentos/métodos
6.
Eur J Pharm Biopharm ; 182: 141-151, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36529256

RESUMO

INTRODUCTION: Glioblastoma (GBM) is the most common and deadly form of primary brain tumor. Between 30 % and 60 % of GBM are characterized by overexpression of the Epidermal Growth Factor Receptor (EGFR). The anti-EGFR antibody Cetuximab (CTX) showed a favorable effect for EGFR+ colorectal cancer but failed to demonstrate efficacy for GBM. Insufficient CTX passage through the blood-brain barrier (BBB) and the blood-tumor barrier (BTB) is assumed to be the primary determinant of the limited efficacy of this immunotherapy. OBJECTIVE: Using positron emission tomography (PET) imaging, we have previously demonstrated that focused ultrasound (FUS) combined with microbubbles (µB) allowed significant and persistent delivery of CTX across the BBB in healthy mice. In the current study, we investigated by PET imaging the combination impact of CTX and FUS on orthotopic GBM preclinical model. METHODS: After radiolabeling CTX with the long half-life isotope 89Zr, PET images have been acquired overtime in mice bearing U251 (EGFR+) with or without FUS treatment. Autoradiography combined with immunofluorescence staining was used to corroborate CTX delivery with EGFR expression. A survival study was conducted simultaneously to evaluate the therapeutic benefit of repeated CTX monotherapy associated or not with FUS. RESULTS: Ex vivo analysis confirmed that FUS enhanced and homogenized the delivery of CTX into all the FUS exposure area, including the tumor and the contralateral hemisphere at the early-time-point. Interestingly, FUS did not improve the long-term accumulation and retention of CTX in the tumor compared with the control group (no FUS). No significant difference in the CTX treatment efficacy, determined by the survival between FUS and non-FUS groups, has been either observed. This result is consistent with the absence of change in the CTX distribution through the GBM tumor after FUS. The neuroinflammation induced by FUS is not significant enough to explain the failure of the CTX delivery improvement. CONCLUSION: All together, these data suggest that the role of FUS combined with µB on the CTX distribution, even after multiple therapeutic sessions and glial cell activation is insufficient to improve survival of GBM mice compared with CTX treatment alone in this model.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Cetuximab/metabolismo , Cetuximab/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Tomografia por Emissão de Pósitrons
7.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555129

RESUMO

The blood-brain barrier (BBB) controls brain homeostasis; it is formed by vascular endothelial cells that are physically connected by tight junctions (TJs). The BBB expresses efflux transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), which limit the passage of substrate molecules from blood circulation to the brain. Focused ultrasound (FUS) with microbubbles can create a local and reversible detachment of the TJs. However, very little is known about the effect of FUS on the expression of efflux transporters. We investigated the in vivo effects of moderate acoustic pressures on both P-gp and BCRP expression for up to two weeks after sonication. Magnetic resonance-guided FUS was applied in the striatum of 12 rats. P-gp and BCRP expression were determined by immunohistochemistry at 1, 3, 7, and 14 days postFUS. Our results indicate that FUS-induced BBB opening is capable of (i) decreasing P-gp expression up to 3 days after sonication in both the treated and in the contralateral brain regions and is capable of (ii) overexpressing BCRP up to 7 days after FUS in the sonicated regions only. Our findings may help improve FUS-aided drug delivery strategies by considering both the mechanical effect on the TJs and the regulation of P-gp and BCRP.


Assuntos
Barreira Hematoencefálica , Neoplasias , Ratos , Animais , Barreira Hematoencefálica/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Projetos Piloto , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Células Endoteliais/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Encéfalo/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Microbolhas
8.
Pharmaceutics ; 14(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36297663

RESUMO

Glioblastoma (GBM) is an aggressive and malignant primary brain tumor. The blood-brain barrier (BBB) limits the therapeutic options available to tackle this incurable tumor. Transient disruption of the BBB by focused ultrasound (FUS) is a promising and safe approach to increase the brain and tumor concentration of drugs administered systemically. Non-invasive, sensitive, and reliable imaging approaches are required to better understand the impact of FUS on the BBB and brain microenvironment. In this study, nuclear imaging (SPECT/CT and PET/CT) was used to quantify neuroinflammation 48 h post-FUS and estimate the influence of FUS on BBB opening and tumor growth in vivo. BBB disruptions were performed on healthy and GBM-bearing mice (U-87 MG xenograft orthotopic model). The BBB recovery kinetics were followed and quantified by [99mTc]Tc-DTPA SPECT/CT imaging at 0.5 h, 3 h and 24 h post-FUS. The absence of neuroinflammation was confirmed by [18F]FDG PET/CT imaging 48 h post-FUS. The presence of the tumor and its growth were evaluated by [68Ga]Ga-RGD2 PET/CT imaging and post-mortem histological analysis, showing that tumor growth was not influenced by FUS. In conclusion, molecular imaging can be used to evaluate the time frame for systemic treatment combined with transient BBB opening and to test its efficacy over time.

9.
Pharmaceutics ; 14(7)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35890391

RESUMO

The management of brain diseases remains a challenge, particularly because of the difficulty for drugs to cross the blood-brain barrier. Among strategies developed to improve drug delivery, nano-sized emulsions (i.e., nanoemulsions), employed as nanocarriers, have been described. Moreover, focused ultrasound-mediated blood-brain barrier disruption using microbubbles is an attractive method to overcome this barrier, showing promising results in clinical trials. Therefore, nanoemulsions combined with this technology represent a real opportunity to bypass the constraints imposed by the blood-brain barrier and improve the treatment of brain diseases. In this work, a stable freeze-dried emulsion of perfluorooctyl bromide nanodroplets stabilized with home-made fluorinated surfactants able to carry hydrophobic agents is developed. This formulation is biocompatible and droplets composing the emulsion are internalized in multiple cell lines. After intravenous administration in mice, droplets are eliminated from the bloodstream in 24 h (blood half-life (t1/2) = 3.11 h) and no long-term toxicity is expected since they are completely excreted from mice' bodies after 72 h. In addition, intracerebral accumulation of tagged droplets is safely and significantly increased after focused ultrasound-mediated blood-brain barrier disruption. Thus, the proposed nanoemulsion appears as a promising nanocarrier for a successful focused ultrasound-mediated brain delivery of hydrophobic agents.

10.
Pharmaceutics ; 13(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834167

RESUMO

Focused ultrasound in combination with microbubbles (FUS) provides an effective means to locally enhance the delivery of therapeutics to the brain. Translational and quantitative imaging techniques are needed to noninvasively monitor and optimize the impact of FUS on blood-brain barrier (BBB) permeability in vivo. Positron-emission tomography (PET) imaging using [18F]2-fluoro-2-deoxy-sorbitol ([18F]FDS) was evaluated as a small-molecule (paracellular) marker of blood-brain barrier (BBB) integrity. [18F]FDS was straightforwardly produced from chemical reduction of commercial [18F]2-deoxy-2-fluoro-D-glucose. [18F]FDS and the invasive BBB integrity marker Evan's blue (EB) were i.v. injected in mice after an optimized FUS protocol designed to generate controlled hemispheric BBB disruption. Quantitative determination of the impact of FUS on the BBB permeability was determined using kinetic modeling. A 2.2 ± 0.5-fold higher PET signal (n = 5; p < 0.01) was obtained in the sonicated hemisphere and colocalized with EB staining observed post mortem. FUS significantly increased the blood-to-brain distribution of [18F]FDS by 2.4 ± 0.8-fold (VT; p < 0.01). Low variability (=10.1%) of VT values in the sonicated hemisphere suggests reproducibility of the estimation of BBB permeability and FUS method. [18F]FDS PET provides a readily available, sensitive and reproducible marker of BBB permeability to noninvasively monitor the extent of BBB disruption induced by FUS in vivo.

11.
Pharmaceutics ; 13(8)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34452206

RESUMO

Gene therapy represents a powerful therapeutic tool to treat diseased tissues and provide a durable and effective correction. The central nervous system (CNS) is the target of many gene therapy protocols, but its high complexity makes it one of the most difficult organs to reach, in part due to the blood-brain barrier that protects it from external threats. Focused ultrasound (FUS) coupled with microbubbles appears as a technological breakthrough to deliver therapeutic agents into the CNS. While most studies focus on a specific targeted area of the brain, the present work proposes to permeabilize the entire brain for gene therapy in several pathologies. Our results show that, after i.v. administration and FUS sonication in a raster scan manner, a self-complementary AAV9-CMV-GFP vector strongly and safely infected the whole brain of mice. An increase in vector DNA (19.8 times), GFP mRNA (16.4 times), and GFP protein levels (17.4 times) was measured in whole brain extracts of FUS-treated GFP injected mice compared to non-FUS GFP injected mice. In addition to this increase in GFP levels, on average, a 7.3-fold increase of infected cells in the cortex, hippocampus, and striatum was observed. No side effects were detected in the brain of treated mice. The combining of FUS and AAV-based gene delivery represents a significant improvement in the treatment of neurological genetic diseases.

12.
Biomed Opt Express ; 12(4): 2264-2279, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33996228

RESUMO

Glioblastoma multiforme (GBM) is one of the most common and aggressive malignant primary brain tumors in adults. The treatment of GBM is limited by the blood-brain barrier (BBB), which limits the diffusion of appropriate concentrations of therapeutic agents at the tumor site. Among experimental therapies, photo-thermal therapy (PTT) mediated by nanoparticles is a promising strategy. To propose a preclinical versatile research instrument for the development of new PTT for GBM, a multipurpose integrated preclinical device was developed. The setup is able to perform: i) BBB permeabilization by focused ultrasound sonication (FUS); ii) PTT with continuous wave laser; iii) in situ temperature monitoring with photo-acoustic (PA) measurements. In vivo preliminary subcutaneous and transcranial experiments were conducted on healthy or tumor-bearing mice. Transcranial FUS-induced BBB permeabilization was validated using single photon emission computed tomography (SPECT) imaging. PTT capacities were monitored by PA thermometry, and are illustrated through subcutaneous and transcranial in vivo experiments. The results show the therapeutic possibilities and ergonomy of such integrated device as a tool for the validation of future treatments.

13.
Pharmaceutics ; 12(11)2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33233374

RESUMO

The blood-brain barrier is the primary obstacle to efficient intracerebral drug delivery. Focused ultrasound, in conjunction with microbubbles, is a targeted and non-invasive way to disrupt the blood-brain barrier. Many commercially available ultrasound contrast agents and agents specifically designed for therapeutic purposes have been investigated in ultrasound-mediated blood-brain barrier opening studies. The new generation of sono-sensitive agents, such as liquid-core droplets, can also potentially disrupt the blood-brain barrier after their ultrasound-induced vaporization. In this review, we describe the different compositions of agents used for ultrasound-mediated blood-brain barrier opening in recent studies, and we discuss the challenges of the past five years related to the optimal formulation of agents.

14.
J Acoust Soc Am ; 148(4): 2248, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33138521

RESUMO

Passive cavitation detection can be performed to monitor microbubble activity during brain therapy. Microbubbles under ultrasound exposure generate a response characterized by multiple nonlinear emissions. Here, the wide bandwidth of capacitive micromachined ultrasonic transducers (CMUTs) was exploited to monitor the microbubble signature through a rat skull and a macaque skull. The intrinsic nonlinearity of the CMUTs was characterized in receive mode. Indeed, undesirable nonlinear components generated by the CMUTs must be minimized as they can mask the microbubble harmonic response. The microbubble signature at harmonic and ultra-harmonic components (0.5-6 MHz) was successfully extracted through a rat skull using moderate bias voltage.


Assuntos
Microbolhas , Transdutores , Terapia por Ultrassom , Animais , Macaca , Microtecnologia , Ratos , Crânio , Ultrassom , Ultrassonografia
15.
J Control Release ; 328: 304-312, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32860928

RESUMO

Epidermal growth factor receptor (EGFR), involved in cell proliferation and migration, is overexpressed in ~50% of glioblastomas. Anti-EGFR based strategies using monoclonal antibodies (mAb) such as cetuximab (CTX) have been proposed for central nervous system (CNS) cancer therapy. However, the blood-brain barrier (BBB) drastically restricts their brain penetration which limits their efficacy for the treatment of glioblastomas. Herein, a longitudinal PET imaging study was performed to assess the relevance and the impact of focused ultrasound (FUS)-mediated BBB permeabilization on the brain exposure to the anti-EGFR mAb CTX over time. For this purpose, FUS permeabilization process with microbubbles was applied on intact BBB mouse brain before the injection of 89Zr-labeled CTX for longitudinal imaging monitoring. FUS induced a dramatic increase in mAb penetration to the brain, 2 times higher compared to the intact BBB. The transfer of 89Zr-CTX from blood to the brain was rendered significant by FUS (kuptake = 1.3 ± 0.23 min-1 with FUS versus kuptake = 0 ± 0.006 min-1 without FUS). FUS allowed significant and prolonged exposure to mAb in the brain parenchyma. This study confirms the potential of FUS as a target delivery method for mAb in CNS.


Assuntos
Barreira Hematoencefálica , Microbolhas , Animais , Encéfalo , Cetuximab , Sistemas de Liberação de Medicamentos , Cinética , Camundongos
16.
Pharmaceutics ; 12(6)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471244

RESUMO

The multidrug resistance-associated protein 2 (MRP2) mediates the biliary excretion of drugs and metabolites. [99mTc]mebrofenin may be employed as a probe for hepatic MRP2 activity because its biliary excretion is predominantly mediated by this transporter. As the liver uptake of [99mTc]mebrofenin depends on organic anion-transporting polypeptide (OATP) activity, a safe protocol for targeted inhibition of hepatic MRP2 is needed to study the intrinsic role of each transporter system. Diltiazem (DTZ) and cyclosporin A (CsA) were first confirmed to be potent MRP2 inhibitors in vitro. Dynamic acquisitions were performed in rats (n = 5-6 per group) to assess the kinetics of [99mTc]mebrofenin in the liver, intestine and heart-blood pool after increasing doses of inhibitors. Their impact on hepatic blood flow was assessed using Doppler ultrasound (n = 4). DTZ (s.c., 10 mg/kg) and low-dose CsA (i.v., 0.01 mg/kg) selectively decreased the transfer of [99mTc]mebrofenin from the liver to the bile (k3). Higher doses of DTZ and CsA did not further decrease k3 but dose-dependently decreased the uptake (k1) and backflux (k2) rate constants between blood and liver. High dose of DTZ (i.v., 3 mg/kg) but not CsA (i.v., 5 mg/kg) significantly decreased the blood flow in the portal vein and hepatic artery. Targeted pharmacological inhibition of hepatic MRP2 activity can be achieved in vivo without impacting OATP activity and liver blood flow. Clinical studies are warranted to validate [99mTc]mebrofenin in combination with low-dose CsA as a novel substrate/inhibitor pair to untangle the role of OATP and MRP2 activity in liver diseases.

17.
Mol Pharm ; 16(9): 3814-3822, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31356090

RESUMO

A combination of microbubbles (MBs) and ultrasound (US) is an emerging method for noninvasive and targeted enhancement of anti-cancer drug uptake. This method showed an increase local drug extravasation in tumor tissue while reducing the systemic adverse effects in various tumor models. The present study aims to evaluate the effectiveness of this approach for Nab-paclitaxel delivery in a pancreatic tumor model. US and MBs of different types in combination with Nab-paclitaxel showed a loss in cell viability of pancreatic cancer cells in comparison with Nab-paclitaxel treatment alone in in vitro scenario. The in vivo data revealed that US and MBs in combination with Nab-paclitaxel induced a significant decrease in the tumor volume in a subcutaneous pancreatic adenocarcinoma mouse model in comparison to tumors treated with Nab-paclitaxel alone. The postmortem anatomopathological analyses of tumor tissues partially confirmed these results. In conclusion, this study demonstrates that MB-assisted US is a relevant technology to increase the therapeutic effectiveness of Nab-paclitaxel in a pancreatic cancer model.


Assuntos
Albuminas/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Meios de Contraste/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Microbolhas/uso terapêutico , Nanopartículas/química , Paclitaxel/uso terapêutico , Ultrassonografia/métodos , Animais , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/tratamento farmacológico , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Ultrasound Med Biol ; 45(7): 1777-1786, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31023499

RESUMO

Liver fibrosis is the common result of chronic liver disease. Diagnosis and grading liver fibrosis for patient management is mainly based on blood tests and hepatic puncture-biopsy, which is particularly invasive. Quantitative ultrasound (QUS) techniques provide insight into tissue microstructure and are based on the frequency-based analysis of the signals from biologic tissues. This study aims to quantify how spectral-based QUS parameters change with fibrosis grade. The changes in QUS parameters of healthy and fibrotic rabbit liver samples were investigated and were compared with the changes in liver stiffness, using shear wave elastography. Overall, the acoustic concentration was found to decrease with increasing fibrosis grade, and the effective scatterer size was found to be higher in fibrotic livers when compared with normal liver. The result of this study indicates that the combination of three QUS parameters (stiffness, effective scatterer size and acoustic concentration) provides the best classification performance, especially for classifying healthy and fibrotic livers.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Cirrose Hepática/diagnóstico por imagem , Animais , Fígado/diagnóstico por imagem , Masculino , Coelhos
19.
Ultrasound Med Biol ; 45(7): 1762-1776, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31003709

RESUMO

The gastrointestinal (GI) tract presents a notoriously difficult barrier for macromolecular drug delivery, especially for biologics. Herein, we demonstrate that ultrasound-stimulated phase change contrast agents (PCCAs) can transiently disrupt confluent colorectal adenocarcinoma monolayers and improve the transepithelial transport of a macromolecular model drug. With ultrasound treatment in the presence of PCCAs, we achieved a maximum of 44 ± 15% transepithelial delivery of 70-kDa fluorescein isothiocyanate-dextran, compared with negligible delivery through sham control monolayers. Among all tested rarefactional pressures (300-600 kPa), dextran delivery efficiency was consistently greatest at 300 kPa. To explore this unexpected finding, we quantified stable and inertial cavitation energy generated by various ultrasound exposure conditions. In general, lower pressures resulted in more persistent cavitation activity during the 30-s ultrasound exposures, which may explain the enhanced dextran delivery efficiency. Thus, a unique advantage of using low boiling point PCCAs for this application is that the same low-pressure pulses can be used to induce vaporization and provide maximal delivery.


Assuntos
Meios de Contraste , Dextranos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Fluoresceína-5-Isotiocianato/análogos & derivados , Fármacos Gastrointestinais/administração & dosagem , Aumento da Imagem/métodos , Ultrassonografia/métodos , Células Cultivadas , Fluoresceína-5-Isotiocianato/administração & dosagem , Humanos , Técnicas In Vitro
20.
Artigo em Inglês | MEDLINE | ID: mdl-29856720

RESUMO

The axial resolution of an ultrasound imaging system is inversely proportional to the bandwidth of the emitted signal. When conventional pulsing (CP) is used, the impulse response of the transducer and the excitation signal determine together the shape of the emitted pulse and its bandwidth. A way to increase the ultrasound image resolution is to increase the transducer's limited passband. The resolution enhancement compression (REC) is a coding technique that boosts the signal energy in the transition frequency bands, where the energy transduction of the ultrasound probe is less efficient. Consequently, image quality metrics including axial resolution, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) can be improved. In this paper, the objective is to combine REC with coherent plane-wave compounding (CPWC) in order to achieve better image quality at an ultrafast acquisition rate. Promising results are obtained from both wire and cyst phantoms using an excitation signal designed to provide a 54% increase in bandwidth over the one obtained with a broadband pulse excitation at -6 dB. The experimental bandwidth measured from the backscattered echoes was improved by 49% for the wire phantom, when using the CPWC-REC technique compared to CPWC-CP. Furthermore, the axial resolution as derived from the modulation transfer function of the envelope of the wire target was enhanced by 29%. The CNR and SNR were improved up to 9 and up to 4 dB, respectively, in the cyst phantom. These results reveal that CPWC-REC is able to achieve higher spatial resolution, compared to CPWC-CP, with better SNR and CNR. Moreover, experimental results show that an effective implementation on a research scanner of REC using plane-wave imaging is possible. Consistent in vivo acquisition results on rabbit are presented and discussed.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Animais , Vesícula Biliar/diagnóstico por imagem , Fígado/diagnóstico por imagem , Imagens de Fantasmas , Coelhos , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...