Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 10527, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732794

RESUMO

Tropical South American hydroclimate sustains the world's highest biodiversity and hundreds of millions of people. Whitin this region, Amazonia and northeastern Brazil have attracted much attention due to their high biological and social vulnerabilities to climate change (i.e. considered climate change hotspots). Still, their future response to climate change remains uncertain. On precession timescale, it has been suggested that periods of decreased western Amazonian precipitation were accompanied by increased northeastern Brazilian precipitation and vice-versa, setting an east-west tropical South American precipitation dipole. However, the very existence of this precession-driven precipitation dipole remains unsettled given the scarcity of long and appropriate northeastern Brazilian records. Here we show that the precession-driven South American precipitation dipole has persisted over the last 113 ka as revealed by a northern northeastern Brazilian precipitation record obtained from quartz thermoluminescence sensitivity measured in marine sediment cores. Precession-induced austral summer insolation changes drove the precipitation dipole through the interhemispheric temperature gradient control over the regional Walker circulation and the Intertropical Convergence Zone seasonal migration range. Since modern global warming affects the interhemispheric temperature gradient, our study provides insights about possible future tropical South American hydroclimate responses.


Assuntos
Mudança Climática , Chuva , Brasil , Humanos , Estações do Ano , Temperatura
2.
Nat Commun ; 13(1): 1349, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292642

RESUMO

Speleothems can provide high-quality continuous records of the direction and relative paleointensity of the geomagnetic field, combining high precision dating (with U-Th method) and rapid lock-in of their detrital magnetic particles during calcite precipitation. Paleomagnetic results for a mid-to-late Holocene stalagmite from Dona Benedita Cave in central Brazil encompass ~1900 years (3410 BP to 5310 BP, constrained by 12 U-Th ages) of paleomagnetic record from 58 samples (resolution of ~33 years). This dataset reveals angular variations of less than 0.06° yr-1 and a relatively steady paleointensity record (after calibration with geomagnetic field model) contrasting with the fast variations observed in younger speleothems from the same region under influence of the South Atlantic Anomaly. These results point to a quiescent period of the geomagnetic field during the mid-to-late Holocene in the area now comprised by the South Atlantic Anomaly, suggesting an intermittent or an absent behavior at the multi-millennial timescale.

3.
Proc Natl Acad Sci U S A ; 117(38): 23408-23417, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900942

RESUMO

The Younger Dryas (YD), arguably the most widely studied millennial-scale extreme climate event, was characterized by diverse hydroclimate shifts globally and severe cooling at high northern latitudes that abruptly punctuated the warming trend from the last glacial to the present interglacial. To date, a precise understanding of its trigger, propagation, and termination remains elusive. Here, we present speleothem oxygen-isotope data that, in concert with other proxy records, allow us to quantify the timing of the YD onset and termination at an unprecedented subcentennial temporal precision across the North Atlantic, Asian Monsoon-Westerlies, and South American Monsoon regions. Our analysis suggests that the onsets of YD in the North Atlantic (12,870 ± 30 B.P.) and the Asian Monsoon-Westerlies region are essentially synchronous within a few decades and lead the onset in Antarctica, implying a north-to-south climate signal propagation via both atmospheric (decadal-time scale) and oceanic (centennial-time scale) processes, similar to the Dansgaard-Oeschger events during the last glacial period. In contrast, the YD termination may have started first in Antarctica at ∼11,900 B.P., or perhaps even earlier in the western tropical Pacific, followed by the North Atlantic between ∼11,700 ± 40 and 11,610 ± 40 B.P. These observations suggest that the initial YD termination might have originated in the Southern Hemisphere and/or the tropical Pacific, indicating a Southern Hemisphere/tropics to North Atlantic-Asian Monsoon-Westerlies directionality of climatic recovery.

4.
Sci Rep ; 9(1): 1698, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737460

RESUMO

Recent paleoclimatic studies suggest that changes in the tropical rainbelt across the Atlantic Ocean during the past two millennia are linked to a latitudinal shift of the Intertropical Convergence Zone (ITCZ) driven by the Northern Hemisphere (NH) climate. However, little is known regarding other potential drivers that can affect tropical Atlantic rainfall, mainly due to the scarcity of adequate and high-resolution records. In this study, we fill this gap by reconstructing precipitation changes in Northeastern Brazil during the last 2,300 years from a high-resolution lake record of hydrogen isotope compositions of plant waxes. We find that regional precipitation along the coastal area of South America was not solely governed by north-south displacements of the ITCZ due to changes in NH climate, but also by the contraction and expansion of the tropical rainbelt due to variations in sea surface temperature and southeast trade winds in the tropical South Atlantic Basin.

5.
Proc Natl Acad Sci U S A ; 115(52): 13198-13203, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30530675

RESUMO

The diminishing strength of the Earth's magnetic dipole over recent millennia is accompanied by the increasing prominence of the geomagnetic South Atlantic Anomaly (SAA), which spreads over the South Atlantic Ocean and South America. The longevity of this feature at millennial timescales is elusive because of the scarcity of continuous geomagnetic data for the region. Here, we report a unique geomagnetic record for the last ∼1500 y that combines the data of two well-dated stalagmites from Pau d'Alho cave, located close to the present-day minimum of the anomaly in central South America. Magnetic directions and relative paleointensity data for both stalagmites are generally consistent and agree with historical data from the last 500 y. Before 1500 CE, the data adhere to the geomagnetic model ARCH3K.1, which is derived solely from archeomagnetic data. Our observations indicate rapid directional variations (>0.1°/y) from approximately 860 to 960 CE and approximately 1450 to 1750 CE. A similar pattern of rapid directional variation observed from South Africa precedes the South American record by 224 ± 50 y. These results confirm that fast geomagnetic field variations linked to the SAA are a recurrent feature in the region. We develop synthetic models of reversed magnetic flux patches at the core-mantle boundary and calculate their expression at the Earth's surface. The models that qualitatively resemble the observational data involve westward (and southward) migration of midlatitude patches, combined with their expansion and intensification.

6.
Sci Rep ; 7: 44267, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28281650

RESUMO

The exact extent, by which the hydrologic cycle in the Neotropics was affected by external forcing during the last deglaciation, remains poorly understood. Here we present a new paleo-rainfall reconstruction based on high-resolution speleothem δ18O records from the core region of the South American Monsoon System (SAMS), documenting the changing hydrological conditions over tropical South America (SA), in particular during abrupt millennial-scale events. This new record provides the best-resolved and most accurately constrained geochronology of any proxy from South America for this time period, spanning from the Last Glacial Maximum (LGM) to the mid-Holocene.

7.
Sci Rep ; 6: 24762, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27097590

RESUMO

The South American Monsoon System (SAMS) is generally considered to be highly sensitive to Northern Hemisphere (NH) temperature variations on multi-centennial timescales. The direct influence of solar forcing on moisture convergence in global monsoon systems on the other hand, while well explored in modeling studies, has hitherto not been documented in proxy data from the SAMS region. Hence little is known about the sensitivity of the SAMS to solar forcing over the past millennium and how it might compete or constructively interfere with NH temperature variations that occurred primarily in response to volcanic forcing. Here we present a new annually-resolved oxygen isotope record from a 1500-year long stalagmite recording past changes in precipitation in the hitherto unsampled core region of the SAMS. This record details how solar variability consistently modulated the strength of the SAMS on centennial time scales during the past 1500 years. Solar forcing, besides the previously recognized influence from NH temperature changes and associated Intertropical Convergence Zone (ITCZ) shifts, appears as a major driver affecting SAMS intensity at centennial time scales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...