Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 71(1): 14-30, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31206195

RESUMO

Hepatitis B virus (HBV) remains a major global health problem with 257 million chronically infected individuals worldwide, of whom approximately 20 million are co-infected with hepatitis delta virus (HDV). Progress toward a better understanding of the complex interplay between these two viruses and the development of novel therapies have been hampered by the scarcity of suitable cell culture models that mimic the natural environment of the liver. Here, we established HBV and HBV/HDV co-infections and super-infections in self-assembling co-cultured primary human hepatocytes (SACC-PHHs) for up to 28 days in a 384-well format and highlight the suitability of this platform for high-throughput drug testing. We performed RNA sequencing at days 8 and 28 on SACC-PHHs, either HBV mono-infected or HBV/HDV co-infected. Our transcriptomic analysis demonstrates that hepatocytes in SACC-PHHs maintain a mature hepatic phenotype over time, regardless of infection condition. We confirm that HBV is a stealth virus, as it does not induce a strong innate immune response; rather, oxidative phosphorylation and extracellular matrix-receptor interactions are dysregulated to create an environment that promotes persistence. Notably, HDV co-infection also did not lead to statistically significant transcriptional changes across multiple donors and replicates. The lack of innate immune activation is not due to SACC-PHHs being impaired in their ability to induce interferon stimulated genes (ISGs). Rather, polyinosinic:polycytidylic acid exposure activates ISGs, and this stimulation significantly inhibits HBV infection, yet only minimally affects the ability of HDV to infect and persist. Conclusion: These data demonstrate that the SACC-PHH system is a versatile platform for studying HBV/HDV co-infections and holds promise for performing chemical library screens and improving our understanding of the host response to such infections.


Assuntos
Vírus da Hepatite B/imunologia , Vírus Delta da Hepatite/imunologia , Hepatócitos/imunologia , Hepatócitos/virologia , Imunidade Inata/fisiologia , Técnicas de Cocultura/métodos , Humanos
2.
Technology (Singap World Sci) ; 6(1): 1-23, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29682599

RESUMO

Flow cytometry is an invaluable tool utilized in modern biomedical research and clinical applications requiring high throughput, high resolution particle analysis for cytometric characterization and/or sorting of cells and particles as well as for analyzing results from immunocytometric assays. In recent years, research has focused on developing microfluidic flow cytometers with the motivation of creating smaller, less expensive, simpler, and more autonomous alternatives to conventional flow cytometers. These devices could ideally be highly portable, easy to operate without extensive user training, and utilized for research purposes and/or point-of-care diagnostics especially in limited resource facilities or locations requiring on-site analyses. However, designing a device that fulfills the criteria of high throughput analysis, automation and portability, while not sacrificing performance is not a trivial matter. This review intends to present the current state of the field and provide considerations for further improvement by focusing on the key design components of microfluidic flow cytometers. The recent innovations in particle focusing and detection strategies are detailed and compared. This review outlines performance matrix parameters of flow cytometers that are interdependent with each other, suggesting trade offs in selection based on the requirements of the applications. The ongoing contribution of microfluidics demonstrates that it is a viable technology to advance the current state of flow cytometry and develop automated, easy to operate and cost-effective flow cytometers.

3.
Toxicol Appl Pharmacol ; 336: 20-30, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28942002

RESUMO

The failure of drug candidates during clinical trials and post-marketing withdrawal due to Drug Induced Liver Injury (DILI), results in significant late-stage attrition in the pharmaceutical industry. Animal studies have proven insufficient to definitively predict DILI in the clinic, therefore a variety of in vitro models are being tested in an effort to improve prediction of human hepatotoxicity. The model system described here consists of cryopreserved primary rat, dog or human hepatocytes co-cultured together with a fibroblast cell line, which aids in the hepatocytes' maintenance of more in vivo-like characteristics compared to traditional hepatic mono-cultures, including long term viability and retention of activity of cytochrome P450 isozymes. Cell viability was assessed by measurement of ATP following treatment with 29 compounds having known hepatotoxic liabilities. Hµrelrat™, Hµreldog™, and Hµrelhuman™ hepatic co-cultures were treated for 24h, or under repeat-dosing for 7 or 13days, and compared to rat and human hepatic mono-cultures following single-dose exposure for 24h. The results allowed for a comparison of cytotoxicity, species-specific responses and the effect of repeat compound exposure on the prediction of hepatotoxic potential in each model. Results show that the co-culture model had greater sensitivity compared to that of the hepatic mono-cultures. In addition, "time-based ratios" were determined by dividing the compounds' 24-hour TC50/Cmax values by TC50/Cmax values measured after dosing for either 7 or 13days. The results suggest that this approach may serve as a useful adjunct to traditional measurements of hepatotoxicity, improving the predictive value of early screening studies.


Assuntos
Comunicação Celular , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Técnicas de Cocultura , Fibroblastos/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Cultura Primária de Células , Toxicologia/métodos , Animais , Diferenciação Celular , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Cães , Relação Dose-Resposta a Droga , Fibroblastos/metabolismo , Fibroblastos/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Masculino , Ratos Sprague-Dawley , Medição de Risco , Especificidade da Espécie , Fatores de Tempo
4.
Nat Commun ; 8(1): 125, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743900

RESUMO

Hepatitis B virus causes chronic infections in 250 million people worldwide. Chronic hepatitis B virus carriers are at risk of developing fibrosis, cirrhosis, and hepatocellular carcinoma. A prophylactic vaccine exists and currently available antivirals can suppress but rarely cure chronic infections. The study of hepatitis B virus and development of curative antivirals are hampered by a scarcity of models that mimic infection in a physiologically relevant, cellular context. Here, we show that cell-culture and patient-derived hepatitis B virus can establish persistent infection for over 30 days in a self-assembling, primary hepatocyte co-culture system. Importantly, infection can be established without antiviral immune suppression, and susceptibility is not donor dependent. The platform is scalable to microwell formats, and we provide proof-of-concept for its use in testing entry inhibitors and antiviral compounds.The lack of models that mimic hepatitis B virus (HBV) infection in a physiologically relevant context has hampered drug development. Here, Winer et al. establish a self-assembling, primary hepatocyte co-culture system that can be infected with patient-derived HBV without further modifications.


Assuntos
Técnicas de Cocultura/métodos , Vírus da Hepatite B/fisiologia , Hepatite B Crônica/virologia , Hepatócitos/virologia , Células 3T3 , Animais , Antivirais/farmacologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/virologia , Células HEK293 , Células Hep G2 , Vírus da Hepatite B/efeitos dos fármacos , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Camundongos
5.
Toxicol Appl Pharmacol ; 275(1): 44-61, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24333257

RESUMO

Drug induced liver injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine model along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2 weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n=40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n=11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n=14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Drogas em Investigação/efeitos adversos , Hepatócitos/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Biomarcadores/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Técnicas de Cocultura , Cães , Impedância Elétrica , Glutationa/metabolismo , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo
6.
Biochem Pharmacol ; 79(7): 1036-44, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19925779

RESUMO

Within the global pharmaceutical and biotech industries, there is significant interest in identifying in vitro screening systems that are more human-relevant-i.e., that offer greater utility in predicting subcellular and cellular physiological responses in humans in vivo-and that thereby allow investigators to reduce the incidence of costly late-stage failures during pharmaceutical clinical trials, as well as to reduce the use of animals in drug testing. Currently incumbent in vitro screening methods, such as culturing human hepatocytes in suspension, while useful, are limited by a lack of long term cellular function. In order to address this limitation, we have established an integrated, microfluidic, in vitro platform that combines the patented HmuREL((R)) microdevice with a hepatic coculture system. In the present report, we use this platform to study clearance and metabolite generation of a battery of molecular entities. The results show that the flow-based coculture system is capable of clearing, with improved resolution and predictive value, compounds with high, medium, and low clearance values. In addition, when coculture is coupled with flow, higher metabolite production rates are obtained than in static systems.


Assuntos
Hepatócitos/metabolismo , Microfluídica/métodos , Células Cultivadas , Técnicas de Cocultura , Descoberta de Drogas , Humanos , Taxa de Depuração Metabólica
7.
Proc Natl Acad Sci U S A ; 106(37): 15714-9, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19720996

RESUMO

The liver is a major site for the metabolism of xenobiotic compounds due to its abundant level of phase I/II metabolic enzymes. With the cost of drug development escalating to over $400 million/drug there is an urgent need for the development of rigorous models of hepatic metabolism for preclinical screening of drug clearance and hepatotoxicity. Here, we present a microenvironment in which primary human and rat hepatocytes maintain a high level of metabolic competence without a long adaptation period. We demonstrate that co-cultures of hepatocytes and endothelial cells in serum-free media seeded under 95% oxygen maintain functional apical and basal polarity, high levels of cytochrome P450 activity, and gene expression profiles on par with freshly isolated hepatocytes. These oxygenated co-cultures demonstrate a remarkable ability to predict in vivo drug clearance rates of both rapid and slow clearing drugs with an R(2) of 0.92. Moreover, as the metabolic function of oxygenated co-cultures stabilizes overnight, preclinical testing can be carried out days or even weeks before other culture methods, significantly reducing associated labor and cost. These results are readily extendable to other culture configurations including three-dimensional culture, bioreactor studies, as well as microfabricated co-cultures.


Assuntos
Polaridade Celular/fisiologia , Expressão Gênica , Hepatócitos/metabolismo , Oxigênio/metabolismo , Animais , Células Cultivadas , Técnicas de Cocultura , Meios de Cultura Livres de Soro , Sistema Enzimático do Citocromo P-450/metabolismo , Descoberta de Drogas , Interações Medicamentosas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Hepatócitos/citologia , Humanos , Camundongos , Preparações Farmacêuticas/metabolismo , Ratos , Engenharia Tecidual
8.
Tissue Eng Part C Methods ; 15(2): 297-306, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19196121

RESUMO

The generation of a large number of fully functional hepatocytes from a renewable cell source can provide an unlimited resource for bioartificial liver devices and cell replacement therapies. We have established a directed differentiation system using sodium butyrate treatment to generate an enriched population of hepatocyte-like cells from embryonic stem cells. A metabolic analysis of the hepatocyte populations revealed glycolytic and mitochondrial phenotypes similar to mouse hepatoma cells, implying that these cells represent an immature hepatocyte phenotype. To mediate further differentiation, S-NitrosoAcetylPenicillamine (SNAP), a nitric oxide donor, was utilized to induce mitochondrial development in the precursor populations. A comparative analysis of the different treated populations showed that 500microM SNAP treatment resulted in the generation of an enriched population of metabolically mature hepatocyte-like cells with increased differentiated function. Specifically, 500microM SNAP treatment increased glucose consumption, lactate production rates, mitochondrial mass, and potential as compared to untreated populations. In addition, functional analysis revealed that intracellular albumin content, urea secretion rates, and cytochrome P450 7a1 promoter activity were increased in the treated population. The methodology described here to generate an enriched population of metabolically and functionally mature hepatocyte-like cells may have potential implications in drug discovery and regenerative medicine.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , S-Nitroso-N-Acetilpenicilamina/farmacologia , Regulação para Cima/efeitos dos fármacos , Albuminas/metabolismo , Animais , Linhagem Celular , Colesterol 7-alfa-Hidroxilase/genética , Hepatócitos/enzimologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Cinética , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Regiões Promotoras Genéticas/genética
9.
Drug Metab Lett ; 3(4): 296-307, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20041832

RESUMO

Previously we have used human hepatocytes in suspension by measuring the parent loss for prediction of metabolic clearance according to a 1(st)-order kinetic model. In this study, we evaluated a novel integrative approach using plated human hepatocytes to include both uptake processes and metabolism in a single assay. Test articles were added in the medium, and the intrinsic clearance was determined based on the disappearance of the parent compound from the medium. Three different methods: direct, well-stirred, and parallel tube were tested for scaling purpose. With 30 randomly selected compounds with clinical clearance data, the scaled clearance showed reasonable linear correlation with r(2) values of 0.67, 0.72, and 0.70 for direct, well-stirred and parallel tube models, respectively. When human serum albumin (HSA) was added to the incubation medium a shift to lower in vitro clearance was observed for most of the compounds, suggesting that protein binding may have an effect on the metabolic clearance. In the presence of 4% of HSA, which is equivalent to the albumin concentration in the human plasma, the in vitro clearance data have the best prediction of human clearance when using the well-stirred method, followed by the parallel tube method and direct method. This study demonstrates the utility of using plated human hepatocyte as an integrated system for the prediction of human metabolic clearance. In addition, evaluation of the protein binding shift in the clearance showed that a significant number of compounds may not follow the equilibrium assumption according to the well-stirred model.


Assuntos
Hepatócitos/metabolismo , Fígado/metabolismo , Microssomos Hepáticos/metabolismo , Preparações Farmacêuticas/metabolismo , Células Cultivadas , Humanos , Taxa de Depuração Metabólica , Modelos Biológicos , Valor Preditivo dos Testes , Ligação Proteica , Albumina Sérica/metabolismo
10.
Biotechnol Prog ; 24(5): 1132-41, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19194923

RESUMO

The development of implantable engineered liver tissue constructs and ex vivo hepatocyte-based therapeutic devices are limited by an inadequate hepatocyte cell source. In our previous studies, embryoid body (EB)-mediated stem cell differentiation spontaneously yielded populations of hepatocyte lineage cells expressing mature hepatocyte markers such as albumin (ALB) and cytokeratin-18 (CK18). However, these cultures neither yielded a homogenous hepatocyte lineage population nor exhibited detoxification function typical of a more mature hepatocyte lineage cell. In this study, secondary culture configurations were used to study the effects of collagen sandwich culture and oncostatin-M (OSM) or S-nitroso-N-acetylpenicillamine (SNAP) supplementation of EB-derived hepatocyte-lineage cell function. Quantitative immunofluorescence and secreted protein analyses were used to provide insights into the long-term maintenance and augmentation of existing functions. The results of these studies suggest that SNAP, independent of the collagen supplementation, maintained the highest levels of ALB expression, however, mature liver-specific CK18 was only expressed in the presence of gel sandwich culture supplemented with SNAP. In addition, albumin secretion and cytochrome P450 detoxification studies indicated that this condition was the best for the augmentation of hepatocyte-like function. Maintenance and augmentation of hepatocyte-like cells isolated from heterogeneous EB cell populations will be a critical step in generating large numbers of functional differentiated cells for therapeutic use.


Assuntos
Colágeno/metabolismo , Células-Tronco Embrionárias/metabolismo , Hepatócitos/metabolismo , S-Nitroso-N-Acetilpenicilamina/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Colágeno/química , Meios de Cultura/química , Meios de Cultura/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Células-Tronco Embrionárias/citologia , Hepatócitos/citologia , Humanos , Oncostatina M/química , Oncostatina M/metabolismo , S-Nitroso-N-Acetilpenicilamina/química
11.
Biotechnol Bioeng ; 98(3): 631-44, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17390383

RESUMO

Integral to the development of embryonic stem cell therapeutic strategies for hepatic disorders is the identification and establishment of a controllable hepatic differentiation strategy. In order to address this issue we have established an alginate microencapsulation approach which provides a means to modulate the differentiation process through changes in key encapsulation parameters. We report that a wide array of hepatocyte specific markers is expressed by cells differentiated during a 23-day period within an alginate bead microenvironment. These include urea and albumin secretion, glycogen storage, and cytochrome P450 transcription factor activity. In addition, we demonstrate that cellular aggregation is integral to the control of differentiation within the bead environment and this process is mediated by the E-cadherin protein. The temporal expression of surface E-cadherin and hepatocyte functional expression occur concomitantly and both cellular aggregation and albumin synthesis are blocked in the presence of anti E-cadherin immunoglobulin. Furthermore, by establishing a compartmental model of differentiation, which incorporates this aggregation phenomenon, we can optimize key encapsulation parameters.


Assuntos
Alginatos/química , Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Hepatócitos/citologia , Hepatócitos/fisiologia , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Agregação Celular , Diferenciação Celular , Proliferação de Células , Células Cultivadas
12.
Tissue Eng ; 12(6): 1515-25, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16846348

RESUMO

Pluripotent embryonic stem (ES) cells represent a promising renewable cell source for the generation of functional differentiated cells. Previous studies incorporating embryoid body (EB)-mediated stem cell differentiation have, either spontaneously or after growth factor and extracellular matrix protein supplementation, yielded populations of hepatocyte lineage cells expressing mature hepatocyte markers such as albumin (ALB). In an effort to promote ES cell commitment to the hepatocyte lineage, we have evaluated the effects of four culture conditions on albumin and gene expression in differentiating ES cells. Quantitative in situ immunofluorescence and cDNA microarray analyses were used to describe not only lineage specificity but also to provide insights into the effects of disparate culture environments on the mechanisms of differentiation. The results of these studies suggest that spontaneous and collagen-mediated differentiation induce cells with the highest levels of ALB expression but mature liver specific genes were only expressed in the spontaneous condition. Further analysis of gene expression profiles indicated that two distinct mechanisms may govern spontaneous and collagen-mediated differentiation.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Embrião de Mamíferos/citologia , Perfilação da Expressão Gênica , Hepatócitos/fisiologia , Células-Tronco/citologia , Engenharia Tecidual , Proteínas de Fase Aguda/biossíntese , Proteínas de Fase Aguda/genética , Animais , Células Cultivadas , Embrião de Mamíferos/fisiologia , Perfilação da Expressão Gênica/métodos , Hepatócitos/citologia , Camundongos , Células-Tronco/fisiologia
13.
Biotechnol Bioeng ; 93(3): 581-91, 2006 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-16345081

RESUMO

The emergence of hepatocyte based clinical and pharmaceutical technologies, has been limited by the absence of a stable hepatocyte cell source. Embryonic stem cells may represent a potential solution to this cell source limitation problem since they are highly proliferative, renewable, and pluripotent. Although many investigators have described techniques to effectively differentiate stem cells into a variety of mature cell lineages, their practicality is limited by: (1) low yields of fully differentiated cells, (2) absence of large scale processing considerations, and (3) ineffective downstream enrichment protocols. Thus, a differentiation platform that may be modified to induce and sustain differentiated cell function and scaled to increase differentiated cell yield would improve current stem cell differentiation strategies. Microencapsulation provides a vehicle for the discrete control of key cell culture parameters such as the diffusion of growth factors, metabolites, and wastes. In addition, both cell seeding density and bead composition may be manipulated. In order to assess the feasibility of directing stem cell differentiation via microenvironment regulation, we have developed a murine embryonic stem cell (ES) alginate poly-l-lysine microencapsulation hepatocyte differentiation system. Our results indicate that the alginate microenvironment maintains cell viability, is conducive to ES cell differentiation, and maintains differentiated cellular function. This system may ultimately assist in developing scalable stem cell differentiation strategies.


Assuntos
Alginatos , Hepatócitos/citologia , Polilisina/análogos & derivados , Células-Tronco/citologia , Albuminas/metabolismo , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem Celular , Sobrevivência Celular , Embrião de Mamíferos/citologia , Hepatócitos/metabolismo , Camundongos , Ureia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...