Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37568583

RESUMO

The rational design of cyclin-dependent protein kinase (CDK) inhibitors presumes the development of approaches for accurate prediction of selectivity and the activity of small molecular weight anticancer drug candidates. Aiming at attenuation of general toxicity of low selectivity compounds, we herein explored the new chemotype of imidazole-4-N-acetamide substituted derivatives of the pan-CDK inhibitor PHA-793887. Newly synthesized compounds 1-4 containing an aliphatic methyl group or aromatic radicals at the periphery of the scaffold were analyzed for the prediction of relative free energies of binding to CDK1, -2, -5, and -9 using a protocol based on non-equilibrium (NEQ) thermodynamics. This methodology allows for the demonstration of a good correlation between the calculated parameters of interaction of 1-4 with individual targets and the values of inhibitory potencies in in vitro kinase assays. We provide evidence in support of NEQ thermodynamics as a time sparing, precise, and productive approach for generating chemical inhibitors of clinically relevant anticancer targets.

2.
J Chem Inf Model ; 63(4): 1239-1248, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36763797

RESUMO

Bioisosteres are molecules that differ in substituents but still have very similar shapes. Bioisosteric replacements are ubiquitous in modern drug design, where they are used to alter metabolism, change bioavailability, or modify activity of the lead compound. Prediction of relative affinities of bioisosteres with computational methods is a long-standing task; however, the very shape closeness makes bioisosteric substitutions almost intractable for computational methods, which use standard force fields. Here, we design a quantum mechanical (QM)-cluster approach based on the GFN2-xTB semi-empirical quantum-chemical method and apply it to a set of H → F bioisosteric replacements. The proposed methodology enables advanced prediction of biological activity change upon bioisosteric substitution of -H with -F, with the standard deviation of 0.60 kcal/mol, surpassing the ChemPLP scoring function (0.83 kcal/mol), and making QM-based ΔΔG estimation comparable to ∼0.42 kcal/mol standard deviation of in vitro experiment. The speed of the method and lack of tunable parameters makes it affordable in current drug research.


Assuntos
Desenho de Fármacos , Teoria Quântica
3.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36559025

RESUMO

Since the beginning of the COVID-19 pandemic, clinical, radiological, and histopathological studies have provided evidence that organizing pneumonia is a possible consequence of the SARS-CoV2 infection. This post-COVID-19 organizing pneumonia (PCOP) causes persisting dyspnea, impaired pulmonary function, and produces radiological abnormalities for at least 5 weeks after onset of symptoms. While most patients with PCOP recover within a year after acute COVID-19, 5-25% of cases need specialized treatment. However, despite substantial resources allocated worldwide to finding a solution to this problem, there are no approved treatments for PCOP. Oral corticosteroids produce a therapeutic response in a majority of such PCOP patients, but their application is limited by the anticipated high-relapse frequency and the risk of severe adverse effects. Herein, we conduct a systematic comparison of the epidemiology, pathogenesis, and clinical presentation of the organizing pneumonias caused by COVID-19 as well as other viral infections. We also use the clinical efficacy of corticosteroids in other postinfection OPs (PIOPs) to predict the therapeutic response in the treatment of PCOP. Finally, we discuss the potential application of a candidate anti-inflammatory and antifibrotic therapy for the treatment of PCOP based on the analysis of the latest clinical trials data.

4.
J Transl Med ; 20(1): 506, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329513

RESUMO

BACKGROUND: Many patients who recovered from COVID are still suffering from pulmonary dysfunction that can be persistent even for months after infection. Therefore, treatment to prevent irreversible impairment of lung function is needed. Treamid (bisamide derivative of dicarboxylic acid, BDDA) was shown to have anti-inflammatory and antifibrotic effects in animal models of pulmonary fibrosis. This study was designed to assess the safety, tolerability, and efficacy of Treamid in the rehabilitation of patients after COVID pneumonia. The aim was to establish whether Treamid could be effective in ameliorating post-COVID sequelae. METHODS: The phase 2, randomized, double-blind, placebo-controlled clinical trial was done at 8 medical centers in Russia. Patients with a diagnosis of COVID in the past medical history (with the first symptoms of COVID appear no earlier than 2 months before screening) and having fibrotic changes in the lungs, decreased lung function (percentage of predicted FVC and/or DLCO < 80%), and moderate or severe dyspnea according to mMRC scale were enrolled and randomly assigned in a 1:1 ratio (stratified by the initial degree of lung damage, age, and concomitant chronic diseases) by use of interactive responsive technology to peroral administration of Treamid 50 mg or placebo once a day for 4 weeks. The primary outcome was the proportion of patients who achieved clinically significant improvement in FVC and/or DLCO (defined as a relative increase in FVC of ≥ 10% or a relative increase in FVC in the range of ≥ 5 to < 10% plus a relative increase in DLCO of ≥ 15%) at week 4 compared with baseline. Secondary endpoints included changes from baseline in dyspnea scoring evaluated by the modified Borg and mMRC scales, pulmonary function (FEV1, FVC, FEV1/FVC ratio, DLCO, TLC, FRC), 6-min walk distance, the overall score of the KBILD questionnaire, and the proportion of patients with a reduction in the degree of lung damage assessed by CT scores. This trial was registered on ClinicalTrials.gov (Identifier: NCT04527354). The study was fully funded by PHARMENTERPRISES LLC. RESULTS: 12 out of 29 patients (41%) in Treamid group achieved clinically significant improvement in FVC and/or DLCO compared to 5 out of 30 patients (17%) in placebo group (p = 0.036). There was a significant decrease of dyspnea according to modified Borg scale observed in the Treamid group (- 0.9 ± 0.7 vs. - 0.4 ± 0.8, p = 0.018). No significant differences in the adverse events were noted. Exploratory analysis of the female population indicated superiority of Treamid over placebo by decreasing dyspnea and the extent of lung damage as well as increasing TLC. CONCLUSIONS: 4 weeks oral administration of 50 mg Treamid was associated with clinically significant improvement in the post-COVID patients, evident by an increase in FVC and/or DLCO as well as decreasing dyspnea. Treamid was well tolerated and can be safely administered to patients discharged after COVID. Treamid was more effective in women visible by superior improvement of COVID sequalae after 4 weeks treatment. Considering that female gender is a risk factor associated with the development of post-COVID symptoms, Treamid might offer a pharmacological treatment for long-term sequalae after COVID and supports further investigation in future clinical trials in post-COVID patients.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Feminino , Humanos , COVID-19/complicações , Pulmão , Método Duplo-Cego , Testes de Função Respiratória , Dispneia , Resultado do Tratamento
6.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34451904

RESUMO

At the end of 2019, a highly contagious infection began its ominous conquest of the world. It was soon discovered that the disease was caused by a novel coronavirus designated as SARS-CoV-2, and the disease was thus abbreviated to COVID-19 (COVID). The global medical community has directed its efforts not only to find effective therapies against the deadly pathogen but also to combat the concomitant complications. Two of the most common respiratory manifestations of COVID are a significant reduction in the diffusing capacity of the lungs (DLCO) and the associated pulmonary interstitial damage. One year after moderate COVID, the incidence rate of impaired DLCO and persistent lung damage still exceeds 30%, and one-third of the patients have severe DLCO impairment and fibrotic lung damage. The persistent respiratory complications may cause substantial population morbidity, long-term disability, and even death due to the lung fibrosis progression. The incidence of COVID-induced pulmonary fibrosis caused by COVID can be estimated based on a 15-year observational study of lung pathology after SARS. Most SARS patients with fibrotic lung damage recovered within the first year and then remained healthy; however, in 20% of the cases, significant fibrosis progression was found in 5-10 years. Based on these data, the incidence rate of post-COVID lung fibrosis can be estimated at 2-6% after moderate illness. What is worse, there are reasons to believe that fibrosis may become one of the major long-term complications of COVID, even in asymptomatic individuals. Currently, despite the best efforts of the global medical community, there are no treatments for COVID-induced pulmonary fibrosis. In this review, we analyze the latest data from ongoing clinical trials aimed at treating post-COVID lung fibrosis and analyze the rationale for the current drug candidates. We discuss the use of antifibrotic therapy for idiopathic pulmonary fibrosis, the IN01 vaccine, glucocorticosteroids as well as the stromal vascular fraction for the treatment and rehabilitation of patients with COVID-associated pulmonary damage.

7.
Int J Mol Sci ; 21(21)2020 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33171668

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease characterized by interstitial fibrosis and progressive respiratory failure. Pirfenidone and nintedanib slow down but do not stop the progression of IPF. Thus, new compounds with high antifibrotic activity and simultaneously regenerative activity are an unmet clinical need. Recently, we showed that Treamid can help restoring the pancreas and testicular tissue in mice with metabolic disorders. We hypothesized that Treamid may be effective in antifibrotic therapy and regeneration of damaged lung tissue in pulmonary fibrosis. In this study, experiments were performed on male C57BL/6 mice with bleomycin-induced pulmonary fibrosis. We applied histological and immunohistochemical methods, ELISA, and assessed the expression of markers of endothelial and epithelial cells in primary cultures of CD31+ and CD326+ lung cells. Finally, we evaluated esterase activity and apoptosis of lung cells in vitro. Our data indicate that Treamid exhibits antifibrotic activity in mice with pulmonary fibrosis and has a positive effect on capillaries of the lungs. Treamid also increases the number of endothelial progenitor cells in the lungs of animals with pulmonary fibrosis. Lastly, Treamid increases esterase activity and decreases apoptosis of CD31+ lung cells in vitro. Based on these findings, we suggest that Treamid may represent a promising compound for the development of new antifibrotic agents, which are capable of stimulating regeneration of lung endothelium in IPF patients.


Assuntos
Ácidos Dicarboxílicos/farmacologia , Fibrose Pulmonar Idiopática/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Bleomicina/toxicidade , Capilares/efeitos dos fármacos , Capilares/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Fibrose , Humanos , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/fisiopatologia , Indóis/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piridonas/farmacologia , Regeneração/efeitos dos fármacos , Regeneração/fisiologia
8.
Eur J Med Chem ; 198: 112331, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32403017

RESUMO

The MDR1/P-glycoprotein (Pgp)/ABCB1 multidrug transporter is being investigated as a druggable target for antitumor therapy for decades. The natural product curcumin is known to provide an efficient scaffold for compounds capable of blocking Pgp mediated efflux and sensitization of multidrug resistant (MDR) cells to the Pgp transported drug doxorubicin (Dox). We performed molecular dynamics simulations and docking of curcumin derivatives into the Pgp model. Based on these calculations, a series of pyrazolocurcumin derivatives with predicted metabolic stability and/or improved binding affinity were proposed for synthesis and evaluation of MDR reversal potency against Dox selected K562/4 subline, a derivative of K562 human chronic myelogenous leukemia cell line. Compounds 16 and 19 which are both dimethylcurcumin pyrazole derivatives bearing an N-p-phenylcarboxylic amide substitution, were the most potent Pgp blockers as determined by intracellular Dox accumulation. Furthermore, at non-toxic submicromolar concentrations 16 and 19 dramatically sensitized K562/4 cells to Dox. Together with good water solubility of 16 and 19, these results indicate that the new pyrazolo derivatives of curcumin are a promising scaffold for development of clinically applicable Pgp antagonists.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/síntese química , Curcumina/síntese química , Doxorrubicina/farmacologia , Leucemia Mieloide/tratamento farmacológico , Amidas/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células K562 , Modelos Moleculares , Relação Estrutura-Atividade
9.
J Comput Aided Mol Des ; 34(2): 121-130, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31965405

RESUMO

The rapid development of new machine learning techniques led to significant progress in the area of computer-aided drug design. However, despite the enormous predictive power of new methods, they lack explainability and are often used as black boxes. The most important decisions in drug discovery are still made by human experts who rely on intuitions and simplified representation of the field. We used D3R Grand Challenge 4 to model contributions of human experts during the prediction of the structure of protein-ligand complexes, and prediction of binding affinities for series of ligands in the context of absence or abundance of experimental data. We demonstrated that human decisions have a series of biases: a tendency to focus on easily identifiable protein-ligand interactions such as hydrogen bonds, and neglect for a more distributed and complex electrostatic interactions and solvation effects. While these biases still allow human experts to compete with blind algorithms in some areas, the underutilization of the information leads to significantly worse performance in data-rich tasks such as binding affinity prediction.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Catepsinas/metabolismo , Desenho de Fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Secretases da Proteína Precursora do Amiloide/química , Ácido Aspártico Endopeptidases/química , Sítios de Ligação , Catepsinas/química , Humanos , Ligação de Hidrogênio , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Bibliotecas de Moléculas Pequenas/química , Termodinâmica
10.
Int J Oncol ; 55(1): 289-297, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31115499

RESUMO

A t(9;22) chromosomal translocation which forms the chimeric tyrosine kinase breakpoint cluster region (BCR)­Abelson murine leukemia viral oncogene homolog 1 (ABL) is a key mechanism underlying the pathogenesis of chronic myelogenous leukemia (CML). Pharmacological inhibition of BCR­ABL with imatinib (Gleevec) has been reported as an effective targeted therapy; however, mutations (including the kinase domain of ABL) suppress the efficacy of inhibitors. PF­114, a derivative of the third generation BCR­ABL inhibitor ponatinib, demonstrated a high inhibitory activity against wild-type and mutant BCR­ABL forms, such as the clinically important T315I. Furthermore, PF­114 exhibited preferential kinase selectivity, safety, notable pharmacokinetic properties and therapeutic efficacy in a murine model. Investigation into the mechanisms of CML cell death revealed an exceptional potency of PF­114 (at low nanomolar concentrations) for the CML­derived K562 cell line, whereas leukemia cell lines that lack the chimeric tyrosine kinase were markedly more refractory. The molecular ordering of events mechanistically associated with K562 cell death included the dephosphorylation of CrkL adaptor protein followed by inhibition of ERK1/2 and Akt, G1 arrest, a decrease of phosphorylated Bcl­2­associated death promoter, Bcl­2­like protein 11, BH3 interacting­domain death agonist, Bcl­extra large and Bcl­2 family apoptosis regulator, and reduced mitochondrial transmembrane potential. Increased Annexin V reactivity, activation of caspases and poly(ADP­ribose)polymerase cleavage were proposed to lead to internucleosomal DNA fragmentation. Thus, PF­114 may be a potent inducer of apoptosis in CML cells. Nevertheless, activation of STAT3 phosphorylation in response to PF­114 may permit cell rescue; thus, a combination of BCR­ABL and STAT3 inhibitors should be considered for improved therapeutic outcome. Collectively, the targeted killing of BCR­ABL­positive cells, along with other beneficial properties, such as in vivo characteristics, suggests PF­114 as a potential candidate for analysis in clinical trials with CML patients.


Assuntos
Proteínas de Fusão bcr-abl/antagonistas & inibidores , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Piridinas/administração & dosagem , Triazóis/administração & dosagem , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Fusão bcr-abl/genética , Células HL-60 , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Camundongos , Mutação , Fosforilação/efeitos dos fármacos , Piridinas/farmacologia , Fator de Transcrição STAT3/metabolismo , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Am Chem Soc ; 139(11): 3942-3945, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28240878

RESUMO

The Diels-Alder reaction is a cornerstone of modern organic synthesis. Despite this, it remains essentially inaccessible to biosynthetic approaches. Only a few natural enzymes catalyze even a formal [4 + 2] cycloaddition, and it remains uncertain if any of them proceed via the Diels-Alder mechanism. In this study, we focus on the [4 + 2] cycloaddition step in the biosynthesis of spinosyn A, a reaction catalyzed by SpnF enzyme, one of the most promising "true Diels-Alderase" candidates. The four currently proposed mechanisms (including the Diels-Alder one) for this reaction in water (as a first-order approximation of the enzymatic reaction) are evaluated by an exhaustive quantum mechanical search for possible transition states (728 were found in total). We find that the line between the recently proposed bis-pericyclic [J. Am. Chem. Soc. 2016, 138 (11), 3631] and Diels-Alder routes is blurred, and favorable transition states of both types may coexist. Application of the Curtin-Hammett principle, however, reveals that the bis-pericyclic mechanism accounts for ∼83% of the reaction flow in water, while the classical Diels-Alder mechanism contributes only ∼17%. The current findings provide a route for modeling this reaction inside the SpnF active site and inferring the catalytic architecture of possible Diels-Alderases.

12.
Dalton Trans ; 44(40): 17795-9, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26399304

RESUMO

We compared explicit and implicit solvation approaches in modeling the free energy profile of the final step of Suzuki-Miyaura coupling. Both approaches produced similar ΔG(≠) in all the studied solvents (benzene, toluene, DMF, ethanol, and water). Solvation free energies of individual reaction components reasonably correlated for explicit and implicit models in aprotic solvents (RMSE = 30-50 kJ mol(-1), R(2) > 0.71). However for ethanol and water the correlation was poor. We attributed this difference to the formation of the PdH-O hydrogen bond with Pd(PPh3)2 which was surprisingly observed in explicit modeling. Further QM calculations of the Pd(PPh3)2-H2O system confirmed the direction (PdH) and stability of this bonding. Therefore we stress the need for considering explicit solvation for modeling Pd-catalyzed reactions in protic solvents.

13.
FEBS Lett ; 588(3): 509-11, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24374341

RESUMO

2,3-Dihydroxy-quinoxaline, a small molecule that promotes ATPase catalytic activity of Herpes Simplex Virus thymidine kinase (HSV-TK), was identified by virtual screening. This compound competitively inhibited HSV-TK catalyzed phosphorylation of acyclovir with Ki=250 µM (95% CI: 106-405 µM) and dose-dependently increased the rate of the ATP hydrolysis with KM=112 µM (95% CI: 28-195 µM). The kinetic scheme consistent with this experimental data is proposed.


Assuntos
Adenosina Trifosfatases/química , Quinoxalinas/farmacologia , Simplexvirus/enzimologia , Timidina Quinase/antagonistas & inibidores , Aciclovir/uso terapêutico , Catálise , Humanos , Cinética , Fosforilação/efeitos dos fármacos , Simplexvirus/efeitos dos fármacos , Timidina Quinase/química
14.
FEBS J ; 280(1): 115-26, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23121694

RESUMO

Molecular modeling was addressed to understand different substrate-binding modes and clarify the role of two positively charged residues of the penicillin G acylase active site - ßR263 and αR145 - in binding of negatively charged substrates. Although the electrostatic contribution to productive substrate binding was dominated by ßR263 rather than αR145, it was found that productive binding was not the only possible mode of substrate placement in the active site. Two extra binding modes - nonproductive and preproductive - were located by means of molecular docking and dynamics with binding affinities comparable with the productive one. A unique feature of nonproductive and preproductive complexes was that the substrate's acyl group did not penetrate the hydrophobic pocket, but occupied a patch on the protein interface spanning from ßR263 to αR145. Nonproductive and preproductive complexes competed with each other and productive binding mode, giving rise to increased apparent substrate binding. Preproductive complex revealed an ability to switch to a productive one during molecular dynamics simulations, and conformational plasticity of the penicillin G acylase active site was shown to be crucial for that. Nonproductive binding observed at molecular modeling corresponded well with experimentally observed substrate inhibition in penicillin acylase catalysis. By combining estimated free energies of substrate binding in each mode, and accounting for two possible conformations of the penicillin G acylase active site (closed and open) quantitative agreement with experimentally measured K(M) values was achieved. Calculated near-attack conformation frequencies from corresponding molecular dynamics simulations were in a quantitative correlation with experimental k(cat) values and demonstrated adequate application of molecular modeling methods.


Assuntos
Proteínas de Escherichia coli/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Penicilina Amidase/química , Algoritmos , Motivos de Aminoácidos , Biocatálise , Domínio Catalítico , Ligação de Hidrogênio , Cinética , Ligação Proteica , Termodinâmica
15.
J Chem Theory Comput ; 9(2): 1093-102, 2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26588753

RESUMO

Slow rotational degrees of freedom in ligands can make alchemical FEP simulations unreliable due to inadequate sampling. We addressed this problem by introducing a FEP-based protocol of ligand conformer focusing in explicit solvent. Our method involves FEP transformations between conformers using equilibrium dihedral angle as a reaction coordinate and provides the cost of "focusing" on one specific conformational state that binds to a protein. The calculated conformer focusing term made a considerable difference of 5-10 kJ/mol in computed relative binding free energies of studied Syk inhibitors and significantly improved the resulting accuracy of predictions.

16.
J Comput Aided Mol Des ; 26(6): 725-35, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22569592

RESUMO

Lead Finder is a molecular docking software. Sampling uses an original implementation of the genetic algorithm that involves a number of additional optimization procedures. Lead Finder's scoring functions employ a set of semi-empiric molecular mechanics functionals that have been parameterized independently for docking, binding energy predictions and rank-ordering for virtual screening. Sampling and scoring both utilize a staged approach, moving from fast but less accurate algorithm versions to computationally more intensive but more accurate versions. Lead Finder includes tools for the preparation of full atom protein and ligand models. In this exercise, Lead Finder achieved 72.9% docking success rate on the Astex test set when the original author-prepared full atom models were used, and 74.1% success rate when the structures were prepared by Lead Finder. The major cause of docking failures were scoring errors resulting from the use of imperfect solvation models. In many cases, docking errors could be corrected by the proper protonation and the use of correct cyclic conformations of ligands. In virtual screening experiments on the DUD test set the early enrichment factor of several tens was achieved on average. However, the area under the ROC curve ("AUC ROC") ranged from 0.70 to 0.74 depending on the screening protocol used, and the separation from the null model was not perfect-0.12-0.15 units of AUC ROC. We assume that effective virtual screening in the whole range of enrichment curve and not just at the early enrichment stages requires more accurate solvation modeling and accounting for the protein backbone flexibility.


Assuntos
Algoritmos , Modelos Moleculares , Proteínas/química , Software , Sítios de Ligação , Desenho de Fármacos , Humanos , Ligantes , Conformação Molecular , Ligação Proteica , Curva ROC
17.
J Mol Model ; 18(6): 2553-66, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22069029

RESUMO

Virtual fragment screening could be a promising alternative to existing experimental screening techniques. However, reliable methods of in silico fragment screening are yet to be established and validated. In order to develop such an approach we first checked how successful the existing molecular docking methods can be in predicting fragment binding affinities and poses. Using our Lead Finder docking software the RMSD of the binding energy prediction was observed to be 1.35 kcal/mol(-1) on a set of 26 experimentally characterized fragment inhibitors, and the RMSD of the predicted binding pose from the experimental one was <1.5 Å. Then, we explored docking of 68 fragments obtained from 39 drug molecules for which co-crystal structures were available from the PDB. It appeared that fragments that participate in oriented non-covalent interactions, such as hydrogen bonds and metal coordination, could be correctly docked in 70-80% of cases suggesting the potential success of rediscovering of corresponding drugs by in silico fragment approach. Based on these findings we've developed a virtual fragment screening technique which involved structural filtration of protein-ligand complexes for specific interactions and subsequent clustering in order to minimize the number of preferable starting fragment candidates. Application of this method led to 2 millimolar-scale fragment PARP1 inhibitors with a new scaffold.


Assuntos
Quinase 2 Dependente de Ciclina/química , Desenho de Fármacos , Inibidores Enzimáticos/química , Poli(ADP-Ribose) Polimerases/química , Sítios de Ligação , Simulação por Computador , Humanos , Ligação de Hidrogênio , Modelos Químicos , Modelos Moleculares , Poli(ADP-Ribose) Polimerase-1 , Ligação Proteica , Estrutura Secundária de Proteína , Bibliotecas de Moléculas Pequenas , Termodinâmica
18.
Proteins ; 79(9): 2693-710, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21769942

RESUMO

A new graph-theoretical approach called thermodynamic sampling of amino acid residues (TSAR) has been elaborated to explicitly account for the protein side chain flexibility in modeling conformation-dependent protein properties. In TSAR, a protein is viewed as a graph whose nodes correspond to structurally independent groups and whose edges connect the interacting groups. Each node has its set of states describing conformation and ionization of the group, and each edge is assigned an array of pairwise interaction potentials between the adjacent groups. By treating the obtained graph as a belief-network-a well-established mathematical abstraction-the partition function of each node is found. In the current work we used TSAR to calculate partition functions of the ionized forms of protein residues. A simplified version of a semi-empirical molecular mechanical scoring function, borrowed from our Lead Finder docking software, was used for energy calculations. The accuracy of the resulting model was validated on a set of 486 experimentally determined pK(a) values of protein residues. The average correlation coefficient (R) between calculated and experimental pK(a) values was 0.80, ranging from 0.95 (for Tyr) to 0.61 (for Lys). It appeared that the hydrogen bond interactions and the exhaustiveness of side chain sampling made the most significant contribution to the accuracy of pK(a) calculations.


Assuntos
Aminoácidos/química , Biologia Computacional/métodos , Proteínas/química , Software , Algoritmos , Domínio Catalítico , Simulação por Computador , Ligação de Hidrogênio , Modelos Moleculares , Maleabilidade , Ribonuclease H/química , Eletricidade Estática , Termodinâmica
19.
J Chem Inf Model ; 51(9): 2090-6, 2011 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-21612285

RESUMO

The dG prediction accuracy by the Lead Finder docking software on the CSAR test set was characterized by R(2)=0.62 and rmsd=1.93 kcal/mol, and the method of preparation of the full-atom structures of the test set did not significantly affect the resulting accuracy of predictions. The primary factors determining the correlation between the predicted and experimental values were the van der Waals interactions and solvation effects. Those two factors alone accounted for R(2)=0.50. The other factors that affected the accuracy of predictions, listed in the order of decreasing importance, were the change of ligand's internal energy upon binding with protein, the electrostatic interactions, and the hydrogen bonds. It appears that those latter factors contributed to the independence of the prediction results from the method of full-atom structure preparation. Then, we turned our attention to the other factors that could potentially improve the scoring function in order to raise the accuracy of the dG prediction. It turned out that the ligand-centric factors, including Mw, cLogP, PSA, etc. or protein-centric factors, such as the functional class of protein, did not improve the prediction accuracy. Following that, we explored if the weak molecular interactions such as X-H...Ar, X-H...Hal, CO...Hal, C-H...X, stacking and π-cationic interactions (where X is N or O), that are generally of interest to the medicinal chemists despite their lack of proper molecular mechanical parametrization, could improve dG prediction. Our analysis revealed that out of these new interactions only CO...Hal is statistically significant for dG predictions using Lead FInder scoring function. Accounting for the CO...Hal interaction resulted in the reduction of the rmsd from 2.19 to 0.69 kcal/mol for the corresponding structures. The other weak interaction factors were not statistically significant and therefore irrelevant to the accuracy of dG prediction. On the basis of our findings from our participation in the CSAR scoring challenge we conclude that a significant increase of accuracy predictions necessitates breakthrough scoring approaches. We anticipate that the explicit accounting for water molecules, protein flexibility, and a more thermodynamically accurate method of dG calculation rather than single point energy calculation may lead to such breakthroughs.


Assuntos
Proteínas/química , Ligantes , Modelos Moleculares , Ligação Proteica
20.
J Mol Model ; 16(7): 1223-30, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20041273

RESUMO

In the current study an innovative method of structural filtration of docked ligand poses is introduced and applied to improve the virtual screening results. The structural filter is defined by a protein-specific set of interactions that are a) structurally conserved in available structures of a particular protein with its bound ligands, and b) that can be viewed as playing the crucial role in protein-ligand binding. The concept was evaluated on a set of 10 diverse proteins, for which the corresponding structural filters were developed and applied to the results of virtual screening obtained with the Lead Finder software. The application of structural filtration resulted in a considerable improvement of the enrichment factor ranging from several folds to hundreds folds depending on the protein target. It appeared that the structural filtration had effectively repaired the deficiencies of the scoring functions that used to overestimate decoy binding, resulting into a considerably lower false positive rate. In addition, the structural filters were also effective in dealing with some deficiencies of the protein structure models that would lead to false negative predictions otherwise. The ability of structural filtration to recover relatively small but specifically bound molecules creates promises for the application of this technology in the fragment-based drug discovery.


Assuntos
Biologia Computacional/métodos , Ligantes , Proteínas/química , Relação Quantitativa Estrutura-Atividade , Sítios de Ligação , Simulação por Computador , Bases de Dados de Proteínas , Desenho de Fármacos , Transferência de Energia , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA