Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Epilepsy Res ; 202: 107356, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564925

RESUMO

Implantable brain recording and stimulation devices apply to a broad spectrum of conditions, such as epilepsy, movement disorders and depression. For long-term monitoring and neuromodulation in epilepsy patients, future extracranial subscalp implants may offer a promising, less-invasive alternative to intracranial neurotechnologies. To inform the design and assess the safety profile of such next-generation devices, we estimated extracranial complication rates of deep brain stimulation (DBS), cranial peripheral nerve stimulation (PNS), responsive neurostimulation (RNS) and existing subscalp EEG devices (sqEEG), as proxy for future implants. Pubmed was searched systematically for DBS, PNS, RNS and sqEEG studies from 2000 to February 2024 (48 publications, 7329 patients). We identified seven categories of extracranial adverse events: infection, non-infectious cutaneous complications, lead migration, lead fracture, hardware malfunction, pain and hemato-seroma. We used cohort sizes, demographics and industry funding as metrics to assess risks of bias. An inverse variance heterogeneity model was used for pooled and subgroup meta-analysis. The pooled incidence of extracranial complications reached 14.0%, with infections (4.6%, CI 95% [3.2 - 6.2]), surgical site pain (3.2%, [0.6 - 6.4]) and lead migration (2.6%, [1.0 - 4.4]) as leading causes. Subgroup analysis showed a particularly high incidence of persisting pain following PNS (12.0%, [6.8 - 17.9]) and sqEEG (23.9%, [12.7 - 37.2]) implantation. High rates of lead migration (12.4%, [6.4 - 19.3]) were also identified in the PNS subgroup. Complication analysis of DBS, PNS, RNS and sqEEG studies provides a significant opportunity to optimize the safety profile of future implantable subscalp devices for chronic EEG monitoring. Developing such promising technologies must address the risks of infection, surgical site pain, lead migration and skin erosion. A thin and robust design, coupled to a lead-anchoring system, shall enhance the durability and utility of next-generation subscalp implants for long-term EEG monitoring and neuromodulation.


Assuntos
Estimulação Encefálica Profunda , Humanos , Estimulação Encefálica Profunda/efeitos adversos , Estimulação Encefálica Profunda/instrumentação , Estimulação Encefálica Profunda/métodos , Eletrodos Implantados/efeitos adversos , Eletroencefalografia/métodos , Eletroencefalografia/instrumentação , Convulsões/diagnóstico
2.
J Nucl Med ; 65(3): 470-474, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38212073

RESUMO

Ictal SPECT is an informative seizure imaging technique to tailor epilepsy surgery. However, capturing the onset of unpredictable seizures is a medical and logistic challenge. Here, we sought to image planned seizures triggered by direct stimulation of epileptic networks via stereotactic electroencephalography (sEEG) electrodes. Methods: In this case series of 3 adult participants with left temporal epilepsy, we identified and stimulated sEEG contacts able to trigger patient-typical seizures. We administered 99mTc-HMPAO within 12 s of ictal onset and acquired SPECT images within 40 min without any adverse events. Results: Ictal hyperperfusion maps partially overlapped concomitant sEEG seizure activity. In both participants known for periictal aphasia, SPECT imaging revealed hyperperfusion in the speech cortex lacking sEEG coverage. Conclusion: Triggering of seizures for ictal SPECT complements discrete sEEG sampling with spatially complete images of early seizure propagation. This readily implementable method revives interest in seizure imaging to guide resective epilepsy surgery.


Assuntos
Epilepsia , Convulsões , Adulto , Humanos , Estudos de Viabilidade , Convulsões/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Córtex Cerebral
3.
BMJ Neurol Open ; 6(1): e000524, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38196982

RESUMO

Background: Subthalamic nucleus deep brain stimulation (STN-DBS) is a well-established treatment for motor complications in Parkinson's disease (PD). However, its effects on neuropsychiatric symptoms remain disputed. The aim of this study was to evaluate the effects of STN-DBS on neuropsychiatric symptoms in PD. Methods: We retrospectively assessed 26 patients with PD who underwent a preoperative levodopa challenge and postoperative levodopa and stimulation challenges 1 year after STN-DBS. Based on the Neuropsychiatric Fluctuations Scale, Neuropsychiatric State Scores and Neuropsychiatric Fluctuation Indices (NFIs) were calculated. Mixed-effects models with random effects for intercept were used to examine the association of Neuropsychiatric State Score and NFI with the different assessment conditions. Results: In acute challenge conditions, there was an estimated increase of 15.9 points in the Neuropsychiatric State Score in stimulation ON conditions (95% CI 11.4 to 20.6, p<0.001) and 7.6 points in medication ON conditions (95% CI 3.3 to 11.9, p<0.001). Neuropsychiatric fluctuations induced by levodopa, quantified with NFI, decreased by 35.54% (95% CI 49.3 to 21.8, p<0.001) 1 year after STN-DBS. Conclusions: Bilateral STN-DBS at therapeutic parameters has acute psychotropic effects similar to levodopa and can modulate and decrease levodopa-induced neuropsychiatric fluctuations.

4.
Eur Arch Psychiatry Clin Neurosci ; 274(3): 685-696, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37668723

RESUMO

Treatment-resistant depression is a severe form of major depressive disorder and deep brain stimulation is currently an investigational treatment. The stimulation's therapeutic effect may be explained through the functional and structural connectivities between the stimulated area and other brain regions, or to depression-associated networks. In this longitudinal, retrospective study, four female patients with treatment-resistant depression were implanted for stimulation in the nucleus accumbens area at our center. We analyzed the structural and functional connectivity of the stimulation area: the structural connectivity was investigated with probabilistic tractography; the functional connectivity was estimated by combining patient-specific stimulation volumes and a normative functional connectome. These structural and functional connectivity profiles were then related to four clinical outcome scores. At 1-year follow-up, the remission rate was 66%. We observed a consistent structural connectivity to Brodmann area 25 in the patient with the longest remission phase. The functional connectivity analysis resulted in patient-specific R-maps describing brain areas significantly correlated with symptom improvement in this patient, notably the prefrontal cortex. But the connectivity analysis was mixed across patients, calling for confirmation in a larger cohort and over longer time periods.


Assuntos
Estimulação Encefálica Profunda , Transtorno Depressivo Maior , Humanos , Feminino , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/terapia , Estudos Retrospectivos , Núcleo Accumbens/diagnóstico por imagem , Estimulação Encefálica Profunda/métodos , Depressão , Imageamento por Ressonância Magnética
5.
Hum Brain Mapp ; 44(12): 4439-4451, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37318767

RESUMO

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for advanced Parkinson's disease. Stimulation of the hyperdirect pathway (HDP) may mediate the beneficial effects, whereas stimulation of the corticospinal tract (CST) mediates capsular side effects. The study's objective was to suggest stimulation parameters based on the activation of the HDP and CST. This retrospective study included 20 Parkinson's disease patients with bilateral STN DBS. Patient-specific whole-brain probabilistic tractography was performed to extract the HDP and CST. Stimulation parameters from monopolar reviews were used to estimate volumes of tissue activated and to determine the streamlines of the pathways inside these volumes. The activated streamlines were related to the clinical observations. Two models were computed, one for the HDP to estimate effect thresholds and one for the CST to estimate capsular side effect thresholds. In a leave-one-subject-out cross-validation, the models were used to suggest stimulation parameters. The models indicated an activation of 50% of the HDP at effect threshold, and 4% of the CST at capsular side effect threshold. The suggestions for best and worst levels were significantly better than random suggestions. Finally, we compared the suggested stimulation thresholds with those from the monopolar reviews. The median suggestion errors for the effect threshold and side effect threshold were 1 and 1.5 mA, respectively. Our stimulation models of the HDP and CST suggested STN DBS settings. Prospective clinical studies are warranted to optimize tract-guided DBS programming. Together with other modalities, these may allow for assisted STN DBS programming.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Núcleo Subtalâmico/diagnóstico por imagem , Núcleo Subtalâmico/fisiologia , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Tratos Piramidais/diagnóstico por imagem , Estudos Prospectivos , Estudos Retrospectivos
6.
Brain Spine ; 3: 101730, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383456

RESUMO

Introduction: Decompressive hemicraniectomy (DCE) is routinely performed for intracranial pressure control after malignant middle cerebral artery (MCA) infarction. Decompressed patients are at risk of traumatic brain injury and the syndrome of the trephined until cranioplasty. Cranioplasty after DCE is itself associated with high complication rates. Single-stage surgical strategies may eliminate the need for follow-up surgery while allowing for safe brain expansion and protection from environmental factors. Research question: Assess the volume needed for safe expansion of the brain to enable single-stage surgery. Materials and methods: We performed a retrospective radiological and volumetric analysis of all patients that had DCE in our clinic between January 2009 and December 2018 and met inclusion criteria. We investigated prognostic parameters in perioperative imaging and assessed clinical outcome. Results: Of 86 patients with DCE, 44 fulfilled the inclusion criteria. Median brain swelling was 75.35 mL (8.7-151.2 mL). Median bone flap volume was 113.3 mL (73.34-146.1 mL). Median brain swelling was 1.62 mm below the previous outer rim of the skull (5.3 mm to -2.19 mm). In 79.6% of the patients, the volume of removed bone alone was equivalent to or larger than the additional intracranial volume needed for brain swelling. Discussion and conclusion: The space provided by removal of the bone alone was sufficient to match the expansion of the injured brain after malignant MCA infarction in the vast majority of our patientsA subgaleal space-expanding flap with a minimal offset can provide protection from trauma and atmospheric pressure without compromising brain expansion.

7.
Clin Neurophysiol ; 151: 50-58, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37156120

RESUMO

OBJECTIVE: The aim of this feasibility study was to investigate the properties of median nerve somatosensory evoked potential (SEPs) recorded from segmented Deep Brain Stimulation (DBS) leads in the sensory thalamus (VP) and how they relate to clinical and anatomical findings. METHODS: We analyzed four patients with central post-stroke pain and DBS electrodes placed in the VP. Median nerve SEPs were recorded with referential and bipolar montages. Electrode positions were correlated with thalamus anatomy and tractography-based medial lemniscus. Early postoperative clinical paresthesia mapping was performed by an independent pain nurse. Finally, we performed frequency and time-frequency analyses of the signals. RESULTS: We observed differences of SEP amplitudes recorded along different directions in the VP. SEP amplitudes did not clearly correlate to both atlas-based anatomical position and fiber-tracking results of the medial lemniscus. However, the contacts of highest SEP amplitude correlated with the contacts of lowest effect-threshold to induce paraesthesia. CONCLUSIONS: SEP recordings from directional DBS leads offer additional information about the neurophysiological (re)organization of the sensory thalamus. SIGNIFICANCE: Directional recordings of thalamic SEPs bear the potential to assist clinical decision-making in DBS for pain.


Assuntos
Dor , Tálamo , Humanos , Tálamo/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Eletrodos , Nervo Mediano
8.
Mov Disord ; 38(5): 818-830, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36987385

RESUMO

BACKGROUND: The landscape of neurophysiological symptoms and behavioral biomarkers in basal ganglia signals for movement disorders is expanding. The clinical translation of sensing-based deep brain stimulation (DBS) also requires a thorough understanding of the anatomical organization of spectral biomarkers within the subthalamic nucleus (STN). OBJECTIVES: The aims were to systematically investigate the spectral topography, including a wide range of sub-bands in STN local field potentials (LFP) of Parkinson's disease (PD) patients, and to evaluate its predictive performance for clinical response to DBS. METHODS: STN-LFPs were recorded from 70 PD patients (130 hemispheres) awake and at rest using multicontact DBS electrodes. A comprehensive spatial characterization, including hot spot localization and focality estimation, was performed for multiple sub-bands (delta, theta, alpha, low-beta, high-beta, low-gamma, high-gamma, and fast-gamma (FG) as well as low- and fast high-frequency oscillations [HFO]) and compared to the clinical hot spot for rigidity response to DBS. A spectral biomarker map was established and used to predict the clinical response to DBS. RESULTS: The STN shows a heterogeneous topographic distribution of different spectral biomarkers, with the strongest segregation in the inferior-superior axis. Relative to the superiorly localized beta hot spot, HFOs (FG, slow HFO) were localized up to 2 mm more inferiorly. Beta oscillations are spatially more spread compared to other sub-bands. Both the spatial proximity of contacts to the beta hot spot and the distance to higher-frequency hot spots were predictive for the best rigidity response to DBS. CONCLUSIONS: The spatial segregation and properties of spectral biomarkers within the DBS target structure can additionally be informative for the implementation of next-generation sensing-based DBS. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Gânglios da Base , Doença de Parkinson/terapia , Eletrodos
9.
Mov Disord Clin Pract ; 10(3): 434-439, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36949800

RESUMO

Background: Directional deep brain stimulation (DBS) allows for steering of the stimulation field, but extensive and time-consuming testing of all segmented contacts is necessary to identify the possible benefit of steering. It is therefore important to determine under which circumstances directional current steering is advantageous. Methods: Fifty two Parkinson's disease patients implanted in the STN with a directional DBS system underwent a standardized monopolar programming session 5 to 9 months after implantation. Individual contacts were tested for a potential advantage of directional stimulation. Results were used to build a prediction model for the selection of ring levels that would benefit from directional stimulation. Results: On average, there was no significant difference in therapeutic window between ring-level contact and best directional contact. However, according to our standardized protocol, 35% of the contacts and 66% of patients had a larger therapeutic window under directional stimulation compared to ring-mode. The segmented contacts warranting directional current steering could be predicted with a sensitivity of 79% and a specificity of 57%. Conclusion: To reduce time required for DBS programming, we recommend additional directional contact testing initially only on ring-level contacts with a therapeutic window of less than 2.0 mA.

10.
Neuromodulation ; 26(8): 1747-1756, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36266180

RESUMO

OBJECTIVE: The beneficial effects of thalamic deep brain stimulation (DBS) at various target sites in treating chronic central neuropathic pain (CPSP) remain unclear. This study aimed to evaluate the effectiveness of DBS at a previously untested target site in the central lateral (CL) thalamus, together with classical sensory thalamic stimulation (ventral posterior [VP] complex). MATERIALS AND METHODS: We performed a monocentric retrospective study of a consecutive series of six patients with CPSP who underwent combined DBS lead implantation of the CL and VP. Patient-reported outcome measures were recorded before and after surgery using the numeric rating scale (NRS), short-form McGill pain questionnaire (sf-MPQ), EuroQol 5-D quality-of-life questionnaire, and Beck Depression Inventory. DBS leads were reconstructed and projected onto a three-dimensional stereotactic atlas. RESULTS: NRS-but not sf-MPQ-rated pain intensity-was significantly reduced throughout the follow-up period of 12 months compared with baseline (p = 0.005, and p = 0.06 respectively, Friedman test). At the last available follow-up (12 to 30 months), three patients described a more than 50% reduction. Two of the three long-term responders were stimulated in the CL (1000 Hz, 90 µs, 3.5-5.0 mA), whereas the third preferred VP complex stimulation (50 Hz, 200 µs, 0.7-1.2 mA). No persistent procedure- or stimulation-associated side effects were noted. CONCLUSIONS: These preliminary findings suggest that DBS of the CL might constitute a promising alternative target in cases in which classical VP complex stimulation does not yield satisfactory postoperative pain reduction. The results need to be confirmed in larger, prospective series of patients.


Assuntos
Estimulação Encefálica Profunda , Neuralgia , Humanos , Estimulação Encefálica Profunda/métodos , Estudos Retrospectivos , Neuralgia/etiologia , Neuralgia/terapia , Tálamo/diagnóstico por imagem , Medição da Dor/métodos
11.
Neuromodulation ; 26(2): 348-355, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35088739

RESUMO

OBJECTIVES: Subthalamic nucleus (STN) deep brain stimulation (DBS) programming in patients with Parkinson disease (PD) may be challenging, especially when using segmented leads. In this study, we integrated a previously validated probabilistic STN sweet spot into a commercially available software to evaluate its predictive value for clinically effective DBS programming. MATERIALS AND METHODS: A total of 14 patients with PD undergoing bilateral STN DBS with segmented leads were included. A nonlinear co-registration of a previously defined probabilistic sweet spot onto the manually segmented STN was performed together with lead reconstruction and tractography of the corticospinal tract (CST) in each patient. Contacts were ranked (level and direction), and corresponding effect and side-effect thresholds were predicted based on the overlap of the volume of activated tissue (VTA) with the sweet spot and CST. Image-based findings were correlated with postoperative clinical testing results during monopolar contact review and chronic stimulation parameter settings used after 12 months. RESULTS: Image-based contact prediction showed high interrater reliability (Cohen kappa 0.851-0.91). Image-based and clinical ranking of the most efficient ring level and direction of stimulation were matched in 72% (95% CI 57.0-83.3) and 65% (95% CI 44.9-81.2), respectively, across the whole cohort. The mean difference between the predicted and clinically observed effect thresholds was 0.79 ± 0.69 mA (p = 0.72). The median difference between the predicted and clinically observed side-effect thresholds was -0.5 mA (p < 0.001, Wilcoxon paired signed rank test). CONCLUSIONS: Integration of a probabilistic STN functional sweet spot into a surgical programming software shows a promising capability to predict the best level and directional contact(s) as well as stimulation settings in DBS for PD and could be used to optimize programming with segmented lead technology. This integrated image-based programming approach still needs to be evaluated on a bigger data set and in a future prospective multicenter cohort.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Núcleo Subtalâmico/fisiologia , Estimulação Encefálica Profunda/métodos , Reprodutibilidade dos Testes , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Software
12.
J Neurosurg ; 138(2): 382-389, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35901672

RESUMO

OBJECTIVE: Decompressive hemicraniectomy (DCE) is the standard of care for space-occupying malignant infarction of the medial cerebral artery in suitable patients. After DCE, the brain is susceptible to trauma and at risk for the syndrome of the trephined. This study aimed to assess the feasibility of using temporary space-expanding flaps, implanted during DCE, to shield the brain from these risks while permitting the injured brain to expand. METHODS: The authors performed a prospective feasibility study to analyze the safety of space-expanding flaps in 10 patients undergoing DCE and evaluated clinical and radiological outcomes. RESULTS: The relatives of 1 patient withdrew consent, leaving 9 patients in the final analysis. No patients required removal of the space-expanding flap because of uncontrolled increase of intracranial pressure or infection. One patient required additional external ventricular drainage and 1 received mannitol. The mean (range) midline shift decreased from 6.67 (3-12) mm to 1.26 (0-2.6) mm after DCE with the space-expanding flap. The authors observed no cases of sinking skin flap syndrome, other complications, or deaths. One patient underwent further treatment due to infection of the reimplanted autologous bone flap. Two patients later refused cranioplasty, preferring to keep the space-expanding flap and thus avoid the potential risks of cranioplasty. CONCLUSIONS: This feasibility study showed that the concurrent use of space-expanding flaps appeared to be safe in patients who underwent DCE for malignant infarction of the medial cerebral artery. Moreover, space-expanding flaps may permit patients to avoid a second surgery for reimplantation of the autologous bone flap and the risks inherent to this procedure.


Assuntos
Craniectomia Descompressiva , Acidente Vascular Cerebral , Humanos , Estudos Prospectivos , Craniectomia Descompressiva/métodos , Retalhos Cirúrgicos , Acidente Vascular Cerebral/cirurgia , Acidente Vascular Cerebral/complicações , Infarto/complicações , Infarto/cirurgia , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos
13.
Neuromodulation ; 26(2): 320-332, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35219571

RESUMO

BACKGROUND: Deep brain stimulation (DBS) programming of multicontact DBS leads relies on a very time-consuming manual screening procedure, and strategies to speed up this process are needed. Beta activity in subthalamic nucleus (STN) local field potentials (LFP) has been suggested as a promising marker to index optimal stimulation contacts in patients with Parkinson disease. OBJECTIVE: In this study, we investigate the advantage of algorithmic selection and combination of multiple resting and movement state features from STN LFPs and imaging markers to predict three relevant clinical DBS parameters (clinical efficacy, therapeutic window, side-effect threshold). MATERIALS AND METHODS: STN LFPs were recorded at rest and during voluntary movements from multicontact DBS leads in 27 hemispheres. Resting- and movement-state features from multiple frequency bands (alpha, low beta, high beta, gamma, fast gamma, high frequency oscillations [HFO]) were used to predict the clinical outcome parameters. Subanalyses included an anatomical stimulation sweet spot as an additional feature. RESULTS: Both resting- and movement-state features contributed to the prediction, with resting (fast) gamma activity, resting/movement-modulated beta activity, and movement-modulated HFO being most predictive. With the proposed algorithm, the best stimulation contact for the three clinical outcome parameters can be identified with a probability of almost 90% after considering half of the DBS lead contacts, and it outperforms the use of beta activity as single marker. The combination of electrophysiological and imaging markers can further improve the prediction. CONCLUSION: LFP-guided DBS programming based on algorithmic selection and combination of multiple electrophysiological and imaging markers can be an efficient approach to improve the clinical routine and outcome of DBS patients.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Estimulação Encefálica Profunda/métodos , Movimento/fisiologia , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Núcleo Subtalâmico/diagnóstico por imagem , Núcleo Subtalâmico/fisiologia , Resultado do Tratamento , Biomarcadores
14.
Neuromodulation ; 26(1): 147-156, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35599160

RESUMO

OBJECTIVE: We aimed to demonstrate the feasibility of using motor evoked responses to intraoperative double-train stimulation to guide lead placement and matching of intraoperative contacts with postoperative electrode programming in spinal cord stimulation for pain performed under general anesthesia. MATERIALS AND METHODS: The study included a series of 20 consecutive patients with refractory pain operated on under general anesthesia. Either percutaneous or paddle leads were implanted and positioned according to the intraoperative mapping results. Neurophysiologic mapping was performed with a double-train stimulation paradigm (intertrain interval of 60 milliseconds, three to five cathodal pulses with 0.5-millisecond pulse duration, and within-train interstimulus intervals of 2-4 milliseconds). The sites where dorsal column responses of the targeted dermatomes were detected were considered optimal for lead placement (intraoperative best contacts). Following spinal cord stimulator (SCS) lead placement, blinded postoperative programming of electrode contacts was matched with the intraoperative best contacts and the pain-paresthesia overlap for the trial phase. A binominal test was used as a statistical method; pre- and postoperative numeric rating scale (NRS) after three months was obtained. RESULTS: A total of 15 patients underwent spinal cord stimulation trial for intractable pain. Of these, ten patients (66%) had a successful trial and received permanent implants; one patient had a successful trial but was never intended to be implanted because of her poor health condition; four patients (26%) had an unsuccessful trial, leading to trial electrode explantation; and five patients had already had an implant with percutaneous leads and therefore underwent electrode revision, of whom four patients received paddle leads. In 18 of the 20 operated patients (90%), we found a match between the best intraoperative contacts and the postoperatively programmed contacts (significantly better than chance, p = 8.2 × 10-15). In 90% of the patients, a pain-paresthesia overlap of 100% was found. In the remaining two patients (10%), the postoperatively best programmed contacts were one contact away from the intraoperative neurophysiologic best contact. A mean preoperative NRS score of 8.2 (variance) and a mean follow-up NRS score after three months of 3.6 (variance) were obtained for all patients with implants. CONCLUSION: In this proof-of-concept study, we were able to demonstrate that SCS lead placement using a double-train stimulation paradigm performed under general anesthesia is a safe and feasible technique, offering reliable prediction of contacts for postoperative programming and excellent pain-paresthesia coverage.


Assuntos
Dor Intratável , Estimulação da Medula Espinal , Feminino , Humanos , Eletrodos , Eletrodos Implantados , Parestesia , Medula Espinal/cirurgia , Medula Espinal/fisiologia , Estimulação da Medula Espinal/métodos , Estudos de Viabilidade
15.
Front Hum Neurosci ; 16: 925283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36393984

RESUMO

Deep Brain Stimulation (DBS) is an effective treatment for advanced Parkinson's disease. However, identifying stimulation parameters, such as contact and current amplitudes, is time-consuming based on trial and error. Directional leads add more stimulation options and render this process more challenging with a higher workload for neurologists and more discomfort for patients. In this study, a sweet spot-guided algorithm was developed that automatically suggested stimulation parameters. These suggestions were retrospectively compared to clinical monopolar reviews. A cohort of 24 Parkinson's disease patients underwent bilateral DBS implantation in the subthalamic nucleus at our center. First, the DBS' leads were reconstructed with the open-source toolbox Lead-DBS. Second, a sweet spot for rigidity reduction was set as the desired stimulation target for programming. This sweet spot and estimations of the volume of tissue activated were used to suggest (i) the best lead level, (ii) the best contact, and (iii) the effect thresholds for full therapeutic effect for each contact. To assess these sweet spot-guided suggestions, the clinical monopolar reviews were considered as ground truth. In addition, the sweet spot-guided suggestions for best lead level and best contact were compared against reconstruction-guided suggestions, which considered the lead location with respect to the subthalamic nucleus. Finally, a graphical user interface was developed as an add-on to Lead-DBS and is publicly available. With the interface, suggestions for all contacts of a lead can be generated in a few seconds. The accuracy for suggesting the best out of four lead levels was 56%. These sweet spot-guided suggestions were not significantly better than reconstruction-guided suggestions (p = 0.3). The accuracy for suggesting the best out of eight contacts was 41%. These sweet spot-guided suggestions were significantly better than reconstruction-guided suggestions (p < 0.001). The sweet spot-guided suggestions of each contact's effect threshold had a mean error of 1.2 mA. On an individual lead level, the suggestions can vary more with mean errors ranging from 0.3 to 4.8 mA. Further analysis is warranted to improve the sweet spot-guided suggestions and to account for more symptoms and stimulation-induced side effects.

16.
Ann Neurol ; 91(5): 602-612, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35150172

RESUMO

OBJECTIVE: The objective of this study was to obtain individual clinical and neuroimaging data of patients undergoing deep brain stimulation (DBS) for essential tremor (ET) from 5 different European centers to identify predictors of outcome and to identify an optimal stimulation site. METHODS: We analyzed retrospectively baseline covariates, pre- and postoperative clinical tremor scores (for 12 months) as well as individual imaging data from 119 patients to obtain individual electrode positions and stimulation volumes. Individual imaging and clinical data were used to calculate a probabilistic stimulation map in normalized space using voxel-wise statistical analysis. Finally, we used this map to train a classifier to predict tremor improvement. RESULTS: Probabilistic mapping of stimulation effects yielded a statistically significant cluster that was associated with a tremor improvement >50%. This cluster of optimal stimulation extended from the posterior subthalamic area to the ventralis intermedius nucleus and coincided with a normative structural connectivity-based cerebellothalamic tract (CTT). The combined features "distance between the stimulation volume and the significant cluster" and "CTT activation" were used as a predictor of tremor improvement. This correctly classified a >50% tremor improvement with a sensitivity of 89% and a specificity of 57%. INTERPRETATION: Our multicenter ET probabilistic stimulation map identified an area of optimal stimulation along the course of the CTT. The results of this study are mainly descriptive until confirmed in independent datasets, ideally through prospective testing. This target will be made openly available and may be used to guide surgical planning and for computer-assisted programming of DBS in the future. ANN NEUROL 2022;91:602-612.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Estimulação Encefálica Profunda/métodos , Tremor Essencial/terapia , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Resultado do Tratamento , Tremor/terapia
17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6285-6288, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892550

RESUMO

Deep brain stimulation is an effective neurosurgical intervention for movement disorders such as Parkinson's disease. Despite its success, the underlying mechanisms are still debated. One tool to better understand them is the Volume of Tissue Activated (VTA), that estimates the region activated by electrical stimulation. Different estimation approaches exist, these typically assume isotropic tissue properties and modelling of anisotropy is often lacking.The present work was aimed at developing and testing a method for patient-specific VTA estimation that incorporated an anisotropic conduction model. Our method was implemented within the open-source toolbox Lead-DBS and is accessible to the public.The present method was further tested with two patient cases and compared to a standard Lead-DBS pipeline for VTA estimation. This showed encouraging similarities in one test scenario and expected differences in another test scenario. Further validation with a wider cohort is warranted.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Anisotropia , Estimulação Elétrica , Humanos , Doença de Parkinson/terapia
18.
NPJ Parkinsons Dis ; 7(1): 77, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489472

RESUMO

Although deep brain stimulation (DBS) of the globus pallidus internus (GPi) and the subthalamic nucleus (STN) has become an established treatment for Parkinson's disease (PD), a recent meta-analysis of outcomes is lacking. To address this gap, we performed a meta-analysis of bilateral STN- and GPi-DBS studies published from 1990-08/2019. Studies with ≥10 subjects reporting Unified Parkinson's Disease Rating Scale (UPDRS) III motor scores at baseline and 6-12 months follow-up were included. Several outcome variables were analyzed and adverse events (AE) were summarized. 39 STN studies (2035 subjects) and 5 GPi studies (292 subjects) were eligible. UPDRS-II score after surgery in the stimulation-ON/medication-OFF state compared to preoperative medication-OFF state improved by 47% with STN-DBS and 18.5% with GPi-DBS. UPDRS-III score improved by 50.5% with STN-DBS and 29.8% with GPi-DBS. STN-DBS improved dyskinesia by 64%, daily OFF time by 69.1%, and quality of life measured by PDQ-39 by 22.2%, while Levodopa Equivalent Daily Dose (LEDD) was reduced by 50.0%. For GPi-DBS information regarding dyskinesia, OFF time, PDQ-39 and LEDD was insufficient for further analysis. Correlation analysis showed that preoperative L-dopa responsiveness was highly predictive of the STN-DBS motor outcome across all studies. Most common surgery-related AE were infection (5.1%) and intracranial hemorrhage (3.1%). Despite a series of technological advances, outcomes of modern surgery are still comparable with those of the early days of DBS. Recent changes in target selection with a preference of GPi in elderly patients with cognitive deficits and more psychiatric comorbidities require more published data for validation.

19.
Acta Neurochir (Wien) ; 163(7): 1957-1964, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33538882

RESUMO

BACKGROUND: Stereotactic biopsies for brainstem lesions are frequently performed to yield an accurate diagnosis and help guide subsequent management. In this study, we summarize our experience with different stereotactic approaches to brainstem lesions of different locations and discuss possible implications for safety and diagnostic yield. METHODS: We retrospectively analyzed 23 adult patients who underwent a stereotactic biopsy for brainstem lesions between October 2011 and December 2019. Depending on the location supra- or infratentorial, trajectories were planned. We assessed the postoperative complications during the hospital stay as well as the diagnostic yield. RESULTS: A supratentorial transfrontal approach was used in 16 (70%) cases, predominantly for lesions in the midbrain, upper pons, and medulla oblongata. An infratentorial, transcerebellar-transpeduncular approach was used in 7 (30%) cases mainly for lesions within the lower pons. All biopsies were confirmed to represent pathological tissue and a definitive diagnosis was achieved in 21 cases (91%). Three patients (13%) had transient weakness in the contralateral part of the body in the immediate postoperative period, which improved spontaneously. There was no permanent morbidity or mortality in this series of patients. CONCLUSION: Lesions of various locations within the brainstem can be successfully targeted via either a supratentorial transfrontal or an infratentorial transcerebellar transpeduncular approach. Our high diagnostic yield of over 90% and the low rate of complications underlines the diagnostic importance of this procedure in order to guide the medical management of these patients.


Assuntos
Neoplasias Encefálicas , Tronco Encefálico , Técnicas Estereotáxicas , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Tronco Encefálico/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
20.
Neuromodulation ; 24(2): 392-399, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33389771

RESUMO

BACKGROUND: Different deep brain stimulation (DBS) targets have been suggested as treatment for patients with pharmacologically refractory Holmes tremor (HT). We report the clinical and quality of life (QoL) long-term (up to nine years) outcome in four patients with HT treated with DBS (in thalamic ventral intermediate nucleus-VIM or in dentato-rubro-thalamic tract-DRTT). MATERIALS AND METHODS: The patients underwent routine clinical evaluations before and after DBS (typically annually). Tremor severity and activities of daily living (ADL) were quantified by the Fahn-Tolosa-Marin Tremor-Rating-Scale (FTMTRS). QoL was assessed using the RAND SF-36-item Health Survey (RAND SF-36). In addition, we computed, in all four patients, the VTA based on the best stimulation settings using heuristic approaches included in the open source toolbox LEAD-DBS. RESULTS: In all patients, tremor and ADL improved significantly at one-year post-DBS follow-up (34-61% improvement in FTMTRS total score compared to baseline). In three out of four patients, the improvement of tremor was sustained no longer than two to three years and only in one patient was sustained up to nine years. In this patient, the largest intersection between VTA and DBS target has been observed. Scores for ADL deteriorated over the course of time, reaching worse levels compared to baseline already during the three-year post-DBS follow-up, in three out of four patients. Physical and mental health component scores of RAND SF-36 had very different outcome between patients and follow-ups and were not associated with tremor-related outcomes. CONCLUSIONS: The benefits of DBS in HT might not be always long lasting. Although QoL slightly improved, this change seemed to be independent of the motor outcome following DBS. The estimation of DBS target and VTA proximity could be a useful tool for DBS clinicians in order to facilitate the DBS programming process and optimize DBS treatment.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Atividades Cotidianas , Tremor Essencial/terapia , Humanos , Neuroimagem , Qualidade de Vida , Resultado do Tratamento , Tremor/diagnóstico por imagem , Tremor/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...