Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
SLAS Technol ; 29(2): 100126, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423211

RESUMO

High-throughput experimentation (HTE) has become more widely utilized in drug discovery for rapid reaction optimization and generation of large synthetic compound arrays. While this has accelerated medicinal chemistry design, make, test (DMT) iterations, the bottleneck of purification persists, consuming time and resources. Herein we describe a general parallel purification approach based on solid phase extraction (SPE) that provides a more efficient and sustainable workflow producing compound libraries with significantly upgraded purity. This robust, user-friendly workflow is fully automated and integrated with HTE library synthesis, as demonstrated by its application to a diverse parallel library compound array generated via amide-bond coupling in HTE microscale format.


Assuntos
Amidas , Descoberta de Drogas
2.
Science ; 376(6592): 532-539, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35482871

RESUMO

Reaction generality is crucial in determining the overall impact and usefulness of synthetic methods. Typical generalization protocols require a priori mechanistic understanding and suffer when applied to complex, less understood systems. We developed an additive mapping approach that rapidly expands the utility of synthetic methods while generating concurrent mechanistic insight. Validation of this approach on the metallaphotoredox decarboxylative arylation resulted in the discovery of a phthalimide ligand additive that overcomes many lingering limitations of this reaction and has important mechanistic implications for nickel-catalyzed cross-couplings.

3.
J Sep Sci ; 45(12): 2055-2063, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35108448

RESUMO

Recent advances in the field of cancer biology have accelerated the discovery and development of novel biopharmaceuticals. At the forefront of these drug development efforts are high-throughput screening, compressed timelines, and limited sample quantities, all characteristic of the discovery space. To meet program targets, large numbers of protein variants must be produced, screened, and characterized, presenting a daunting analytical challenge. Additionally, the higher-order structure is paramount for protein function and must be monitored as a critical quality attribute. Matrix-assisted laser desorption/ionization mass spectrometry has been utilized as an ultra-fast, automatable, sample-sparing analytical tool for biomolecules. Our group has published applications integrating hydrogen-deuterium exchange mass spectrometry with matrix-assisted laser desorption/ionization mass spectrometry for the rapid conformational characterization of small proteins, the current work expands this application to monoclonal and bi-specific antibodies. This study demonstrates the ability of the methodology, matrix-assisted laser desorption/ionization hydrogen-deuterium exchange mass spectrometry, to detect conformational differences between bi-specific antibodies from different expression hosts. These conformational differences were validated by orthogonal techniques including circular dichroism, nuclear magnetic resonance, and size-exclusion chromatography hydrogen-deuterium exchange mass spectrometry. This work demonstrates the utility of applying the developed methodology as a rapid conformational screening tool to triage samples for further analytical characterization.


Assuntos
Medição da Troca de Deutério , Hidrogênio , Deutério/química , Deutério/metabolismo , Medição da Troca de Deutério/métodos , Hidrogênio/química , Lasers , Proteínas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
4.
Chempluschem ; 87(3): e202100545, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35112808

RESUMO

Palladium-catalyzed Suzuki-Miyaura (SM) coupling is widely utilized in the construction of carbon-carbon bonds. In this study, nanoelectrospray ionization mass spectrometry (nanoESI-MS) is applied to simultaneously monitor precatalysts, catalytic intermediates, reagents, and products of the SM cross-coupling reaction of 3-Br-5-Ph-pyridine and phenylboronic acid. A set of Pd cluster ions related to the monoligated Pd (0) active catalyst is detected, and its deconvoluted isotopic distribution reveals contributions from two neutral molecules. One is assigned to the generally accepted Pd(0) active catalyst, seen in MS as the protonated molecule, while the other is tentatively assigned to an oxidized catalyst which was found to increase as the reaction proceeds. Oxidative stress testing of a synthetic model catalyst 1,5-cyclooctadiene Pd XPhos (COD-Pd-XPhos) performed using FeCl3 supported this assignment. The formation and conversion of the oxidative addition intermediate during the catalytic cycle was monitored to provide information on the progress of the transmetalation step.

5.
Angew Chem Int Ed Engl ; 61(21): e202117655, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35139257

RESUMO

At the forefront of chemistry and biology research, development timelines are fast-paced and large quantities of pure targets are rarely available. Herein, we introduce a new framework, which is built upon an automated, online trapping-enrichment multi-dimensional liquid chromatography platform (TE-Dt-mDLC) that enables: 1) highly efficient separation of complex mixtures in a first dimension (1 D-UV); 2) automated peak trapping-enrichment and buffer removal achieved through a sequence of H2 O and D2 O washes using an independent pump setup; and 3) a second dimension separation (2 D-UV-MS) with fully deuterated mobile phases and fraction collection to minimize protic residues for immediate NMR analysis while bypassing tedious drying processes and minimizing analyte degradation. Diverse examples of target isolation and characterization from organic synthesis and natural product chemistry laboratories are illustrated, demonstrating recoveries above 90 % using as little as a few micrograms of material.


Assuntos
Produtos Biológicos , Cromatografia Líquida , Espectroscopia de Ressonância Magnética , Solventes
6.
J Med Chem ; 65(1): 485-496, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34931831

RESUMO

Inhibitor cystine knot peptides, derived from venom, have evolved to block ion channel function but are often toxic when dosed at pharmacologically relevant levels in vivo. The article describes the design of analogues of ProTx-II that safely display systemic in vivo blocking of Nav1.7, resulting in a latency of response to thermal stimuli in rodents. The new designs achieve a better in vivo profile by improving ion channel selectivity and limiting the ability of the peptides to cause mast cell degranulation. The design rationale, structural modeling, in vitro profiles, and rat tail flick outcomes are disclosed and discussed.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/efeitos dos fármacos , Dor/tratamento farmacológico , Bloqueadores dos Canais de Sódio/síntese química , Bloqueadores dos Canais de Sódio/farmacologia , Venenos de Aranha/síntese química , Animais , Degranulação Celular/efeitos dos fármacos , Cistina/química , Desenho de Fármacos , Temperatura Alta , Mastócitos/efeitos dos fármacos , Modelos Moleculares , Medição da Dor/efeitos dos fármacos , Ratos , Venenos de Aranha/farmacologia
7.
ChemistryOpen ; 10(5): 600-606, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34028203

RESUMO

Electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) offers a renewable approach to produce the value-added platform chemical 2,5-furandicarboxylic acid (FDCA). The key for the economic viability of this approach is to develop active and selective electrocatalysts. Nevertheless, a reliable catalyst evaluation protocol is still missing, leading to elusive conclusions on criteria for a high-performing catalyst. Herein, we demonstrate that besides the catalyst identity, secondary parameters such as materials of conductive substrates for the working electrode, concentration of the supporting electrolyte, and electrolyzer configurations have profound impact on the catalyst performance and thus need to be optimized before assessing the true activity of a catalyst. Moreover, we highlight the importance of those secondary parameters in suppressing side reactions, which has long been overlooked. The protocol is validated by evaluating the performance of free-standing Cu-foam, and CuCoO modified with NaPO2 H2 and Ni, which were immobilized on boron-doped diamond (BDD) electrodes. Recommended practices and figure of merits in carefully evaluating the catalyst performance are proposed.

8.
Anal Chim Acta ; 1142: 10-18, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33280687

RESUMO

At the forefront of synthetic endeavors in the pharmaceutical industry, including drug discovery and high-throughput screening, timelines are tight and large quantities of pure chemical targets are rarely available. In this regard, the development of novel and increasingly challenging chemistries requires a commensurate level of innovation to develop reliable analytical assays and purification workflows with rapid turnaround that enables accelerated pharmacological evaluation. A small-scale automation platform enabling high-throughput analysis and purification to streamline the selection of candidate leads would be a transformative advance. Herein, we introduce an automation-friendly solid-phase extraction-matrix-assisted laser desorption/ionization (SPE-MALDI) platform applied to the high-throughput purification and analysis of peptide libraries. This advance enabled us to purify peptides from microgram levels in less than a day with results comparable to traditional high-performance liquid chromatography-diode array detection-mass spectrometry (HPLC-DAD-MS).


Assuntos
Biblioteca de Peptídeos , Peptídeos , Ensaios de Triagem em Larga Escala , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fluxo de Trabalho
9.
Anal Chem ; 92(19): 13443-13451, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32786491

RESUMO

Modern pharmaceutical processes can often lead to multicomponent mixtures of closely related species that are difficult to resolve under chromatographic conditions, and even worse in preparative scale settings. Despite recent improvements in column technology and instrumentation, there remains an urgent need for creating innovative approaches that address challenging coelutions of critical pair and poor chromatographic productivity of purification methods. Herein, we overcome these challenges by introducing a simple and practical technique named multifactorial peak crossover (MPC) via computer-assisted chromatographic modeling. The approach outlined here focuses on mapping the separation landscape of pharmaceutical mixtures to quickly identify spaces of peak coelution crossings which enables one to conveniently switch the elution order of target analytes. Diverse examples of MPC diagrams as a function of column temperature, mobile phase gradient or a multifactorial combination in reversed phase and ion exchange chromatography (RPLC and IEC) modes are generated using ACD Laboratories/LC Simulator software and corroborated with experimental data match (overall retention time differences of less than 1%). This powerful MPC technique allows us to gain massive productivity increases (shorter cycle time and higher sample loading) for purification of pharmaceuticals by selectively switching the elution order of target components away from undesired tailing peaks and coelution spaces. MPC chromatography dramatically reduces the time spent developing productive analytical and preparative scale separations. In addition, we illustrate how this new MPC concept can be used to gain substantial improvements of the signal-to-noise ratio, enabling straightforward ppb detection of low-level target components with direct impact in the quantitation of metabolites and potential genotoxic impurities (PGIs). These innovations are of paramount importance in order to facilitate efficient isolation, characterization, and quantitation of drug substances in the development of new medicines.

10.
Analyst ; 144(9): 2872-2880, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30830135

RESUMO

Modern process research and development can often be hampered by the tedious method development required to chromatographically resolve mixtures of chemical species with very similar physical properties. Herein, we describe a simple approach for the development and implementation of an efficient ultra-high performance liquid chromatography (UHPLC) assay that is extensively applied to the separation and analysis of multicomponent reaction mixtures of closely related pharmaceutical intermediates and impurities. Methods are optimized using multi-column and multi-solvent UHPLC screening in conjunction with chromatography simulation software (ACD Labs/LC Simulator). This approach is implemented to enable the separation, identification, mapping and control of impurities formed within the process chemistry optimization of the dimeric catalyst used in the synthesis of new drug substances. The final method utilized a sub-2 µm C18 stationary phase (2.1 mm I.D. × 50 mm length, 1.7 µm particle size ACQUITY UPLC BEH C18) with a non-conventional chaotropic mobile phase buffer (35 mM potassium hexafluorophosphate in 0.1% phosphoric acid/acetonitrile) in order to achieve baseline separation of all reaction components. The chromatographic simulation and modeling strategy served to generate 3D resolution maps with robust separation conditions that match the outcome of subsequent experimental data (overall ΔtR < 0.35%). Our multi-column UHPLC screening with computer-assisted chromatographic modeling is a great addition to the toolbox of synthetic chemists and can be a powerful tool for streamlining process chemistry optimization in organic chemistry laboratories across both academic and industrial sectors.


Assuntos
Carbamatos/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Compostos Heterocíclicos com 2 Anéis/isolamento & purificação , Cromatografia Líquida de Alta Pressão/instrumentação , Simulação por Computador
11.
J Pharm Biomed Anal ; 165: 366-373, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30580085

RESUMO

Within the pharmaceutical industry, the determination of residual solvents by Gas Chromatography Flame Ionization Detection (GC-FID) is a highly utilized analytical test that often employs helium (He) as the carrier gas. However, many do not realize that helium is a non-renewable resource that will eventually become progressively more difficult to source. In recent years, analytical chemists are increasingly adopting hydrogen (H2) in place of helium for routine GC analysis. In this study, a simple and efficient generic/universal GC-FID method using H2 as the carrier gas has been developed with the capability of baseline resolution of over 30 of the most commonly used solvents in development and manufacturing with a method run time of less than eight minutes. The use of this method for the separation and analysis of solvents within a pharmaceutical manufacturing process is demonstrated with additional method validation data presented using five different diluents as a means to increase flexibility for the chromatographer. Furthermore, it is the recommendation of the authors that the current compendia for residual solvent analysis be updated to allow for hydrogen as a carrier gas. The similarity between He and H2 observed within this study supports the use of hydrogen as a suitable replacement for helium, and an update of the EU and USP compendia for residual solvent analysis should be made to reflect this.


Assuntos
Cromatografia Gasosa/métodos , Ionização de Chama/métodos , Hidrogênio/química , Solventes/análise , Indústria Farmacêutica/métodos , Solventes/química
12.
Anal Chim Acta ; 1018: 1-6, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-29605126

RESUMO

Column temperature control is a fundamental component of liquid chromatography experiments. However, it is typically monitored indirectly by tracking the temperature of an adjacent heating element that exchanges heat with the column in a controlled environment. The practice of not directly measuring the column temperature means that uncontrolled contributions of heat, such as frictional heating inside the column, can be overlooked. The present work describes the use of a high-resolution infrared thermal imaging camera to directly measure the column heat map during mobile phase flow. The approach was used to measure the longitudinal temperature gradient formed with three common mobile phases: water, methanol, and acetonitrile, in two 50 mm reversed-phase columns, a 1.7 µm particle-packed column and a polystyrene divinylbenzene monolith. In a close approximation to an adiabatic environment, the temperature gradients (ΔT) observed with the 1.7 µm particle column at a linear velocity of 5.8 mm/s were up to +16.6 and + 12.8 °C above an ambient temperature of 23 °C for water and acetonitrile, respectively. In the case of water, the measured temperature gradient values (ΔT) were within 1% difference of theoretically-calculated values and on average within 10% for acetonitrile. By contrast, the ΔT observed in the monolith was negligible. The elevated temperatures that are generated through friction in sub-2 µm particle columns may be particularly important to consider for the design of experiments that measure structural features of temperature-sensitive analytes, such as biomolecules. While frictional heating is one important application of the thermal imaging approach described, the technique can be used to provide a data-rich profile of heat exchange in numerous experimental configurations, chromatographic or otherwise.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...