Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(8)2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34440783

RESUMO

Galanin is a peptide that is conserved among different species and plays various roles in an organism, although its entire role is not completely understood. For many years, galanin has been linked mainly with the neurotransmission in the nervous system; however, recent reports underline its role in immunity. Zebrafish (Danio rerio) is an intensively developing animal model to study infectious diseases. In this study, we used larval zebrafish to determine the role of galanin in bacterial infection. We showed that knockout of galanin in zebrafish leads to a higher bacterial burden and mortality during Mycobacterium marinum and Staphylococcus aureus infection, whereas administration of a galanin analogue, NAX 5055, improves the ability of fish to control the infection caused by both pathogens. Moreover, the transcriptomics data revealed that a lower number of genes were regulated in response to mycobacterial infection in gal-/- mutants compared with their gal+/+ wild-type counterparts. We also found that galanin deficiency led to significant changes in immune-related pathways, mostly connected with cytokine and chemokine functions. The results show that galanin acts not only as a neurotransmitter but is also involved in immune response to bacterial infections, demonstrating the complexity of the neuroendocrine system and its possible connection with immunity.


Assuntos
Galanina/metabolismo , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium marinum/patogenicidade , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Galanina/genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Mediadores da Inflamação/metabolismo , Infecções por Mycobacterium não Tuberculosas/genética , Infecções por Mycobacterium não Tuberculosas/imunologia , Infecções por Mycobacterium não Tuberculosas/metabolismo , Mycobacterium marinum/imunologia , Transdução de Sinais , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/imunologia , Transcriptoma , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
2.
Cell Biosci ; 11(1): 126, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233759

RESUMO

BACKGROUND: Leptin plays a critical role in the regulation of metabolic homeostasis. However, the molecular mechanism and cross talks between leptin and metabolic pathways leading to metabolic homeostasis across different species are not clear. This study aims to explore the effects of leptin in mice and zebrafish larvae by integration of metabolomics and transcriptomics. Different metabolomic approaches including mass spectrometry, nuclear magnetic resonance (NMR) and high-resolution magic-angle-spinning NMR spectrometry were used to investigate the metabolic changes caused by leptin deficiency in mutant ob/ob adult mice and lepb-/- zebrafish larvae. For transcriptome studies, deep RNA sequencing was used. RESULTS: Thirteen metabolites were identified as common biomarkers discriminating ob/ob mice and lepb-/- zebrafish larvae from their respective wild type controls: alanine, citrulline, ethanolamine, glutamine, glycine, histidine, isoleucine, leucine, methionine, phenylalanine, putrescine, serine and threonine. Moreover, we also observed that glucose and lipid levels were increased in lepb-/- zebrafish larvae compared to the lepb+/+ group. Deep sequencing showed that many genes involved in proteolysis and arachidonic acid metabolism were dysregulated in ob/ob mice heads and lepb mutant zebrafish larvae compared to their wild type controls, respectively. CONCLUSIONS: Leptin deficiency leads to highly similar metabolic alterations in metabolites in both mice and zebrafish larvae. These metabolic changes show similar features as observed during progression of tuberculosis in human patients, mice and zebrafish larvae. In addition, by studying the transcriptome, we found similar changes in gene regulation related to proteolysis and arachidonic acid metabolism in these two different in vivo models.

3.
J Endocrinol ; 249(2): 125-134, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33705349

RESUMO

Leptin is a hormone which functions in the regulation of energy homeostasis via suppression of appetite. In zebrafish, there are two paralogous genes encoding leptin, called lepa and lepb. In a gene expression study, we found that the lepb gene, not the lepa gene, was significantly downregulated under the state of insulin-resistance in zebrafish larvae, suggesting that the lepb plays a role in glucose homeostasis. In the current study, we characterised lepb-deficient (lepb-/-) adult zebrafish generated via a CRISPR-CAS9 gene editing approach by investigating whether the disruption of the lepb gene would result in the development of type 2 diabetes mellitus (T2DM) and diabetic complications. We observed that lepb-/- adult zebrafish had an increase in body weight, length and visceral fat accumulation, compared to age-matched control zebrafish. In addition, lepb-/- zebrafish had significantly higher blood glucose levels compared to control zebrafish. These data collectively indicate that lepb-/- adult zebrafish display the features of T2DM. Furthermore, we showed that lepb-/- adult zebrafish had glomerular hypertrophy and thickening of the glomerular basement membrane, compared to control zebrafish, suggesting that lepb-/- adult zebrafish develop early signs of diabetic nephropathy. In conclusion, our results demonstrate that lepb regulates glucose homeostasis and adiposity in zebrafish, and suggest that lepb-/- mutant zebrafish are a promising model to investigate the role of leptin in the development of T2DM and are an attractive model to perform mechanistic and therapeutic research in T2DM and its complications.


Assuntos
Adiposidade/genética , Glucose/metabolismo , Homeostase/fisiologia , Leptina/deficiência , Leptina/genética , Adiposidade/fisiologia , Animais , Glicemia , Peso Corporal , Sistemas CRISPR-Cas , Deleção de Genes , Homeostase/genética , Hipertrofia/etiologia , Glomérulos Renais/patologia , Leptina/metabolismo , Peixe-Zebra
4.
Biology (Basel) ; 10(2)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573348

RESUMO

During a pathological condition, many different systems are involved in the response of an affected organism. Galanin is considered to be a neuropeptide that plays an important role in the central nervous system; however, it is involved in many other biological processes, including the immune response. During our studies, we showed that galanin became upregulated in zebrafish larvae when exposed to copper sulfate. Moreover, the presence of normal levels of galanin, administration of a galanin analog NAX 5055 or galanin overexpression led to lowered lateral line damage and enhanced expression of inflammatory markers compared to the knockout larvae. The results showed that the neuroendocrine system acts multifunctionally and should be considered as a part of the complex neuro-immune-endocrine axis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...