Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Function (Oxf) ; 5(5)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984988

RESUMO

Mesangial cells offer structural support to the glomerular tuft and regulate glomerular capillary flow through their contractile capabilities. These cells undergo phenotypic changes, such as proliferation and mesangial expansion, resulting in abnormal glomerular tuft formation and reduced capillary loops. Such adaptation to the changing environment is commonly associated with various glomerular diseases, including diabetic nephropathy and glomerulonephritis. Thrombin-induced mesangial remodeling was found in diabetic patients, and expression of the corresponding protease-activated receptors (PARs) in the renal mesangium was reported. However, the functional PAR-mediated signaling in mesangial cells was not examined. This study investigated protease-activated mechanisms regulating mesangial cell calcium waves that may play an essential role in the mesangial proliferation or constriction of the arteriolar cells. Our results indicate that coagulation proteases such as thrombin induce synchronized oscillations in cytoplasmic Ca2+ concentration of mesangial cells. The oscillations required PAR1 G-protein coupled receptors-related activation, but not a PAR4, and were further mediated presumably through store-operated calcium entry and transient receptor potential canonical 3 (TRPC3) channel activity. Understanding thrombin signaling pathways and their relation to mesangial cells, contractile or synthetic (proliferative) phenotype may play a role in the development of chronic kidney disease and requires further investigation.


Assuntos
Sinalização do Cálcio , Células Mesangiais , Receptor PAR-1 , Trombina , Humanos , Receptor PAR-1/metabolismo , Células Mesangiais/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Trombina/metabolismo , Trombina/farmacologia , Cálcio/metabolismo , Células Cultivadas , Proliferação de Células , Receptores de Trombina/metabolismo
2.
Int J Mol Sci ; 24(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38003679

RESUMO

Lupus nephritis (LN) is a serious complication for many patients who develop systemic lupus erythematosus, which primarily afflicts women. Our studies to identify biomarkers and the pathogenic mechanisms underlying LN will provide a better understanding of disease progression and sex bias, and lead to identification of additional potential therapeutic targets. The glycosphingolipid lactosylceramide (LacCer) and N-linked glycosylated proteins (N-glycans) were measured in urine and serum collected from LN and healthy control (HC) subjects (10 females and 10 males in each group). The sera from the LN and HC subjects were used to stimulate cytokine secretion and intracellular Ca2+ flux in female- and male-derived primary human renal mesangial cells (hRMCs). Significant differences were observed in the urine of LN patients compared to HCs. All major LacCers species were significantly elevated and differences between LN and HC were more pronounced in males. 72 individual N-glycans were altered in LN compared to HC and three N-glycans were significantly different between the sexes. In hRMCs, Ca2+ flux, but not cytokine secretion, was higher in response to LN sera compared to HC sera. Ca2+ flux, cytokine secretion, and glycosphingolipid levels were significantly higher in female-derived compared to male-derived hRMCs. Relative abundance of some LacCers and hexosylceramides were higher in female-derived compared to male-derived hRMCs. Urine LacCers and N-glycome could serve as definitive LN biomarkers and likely reflect renal disease activity. Despite higher sensitivity of female hRMCs, males may experience greater increases in LacCers, which may underscore worse disease in males. Elevated glycosphingolipid metabolism may poise renal cells to be more sensitive to external stimuli.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Feminino , Masculino , Nefrite Lúpica/patologia , Biomarcadores , Citocinas , Glicoesfingolipídeos , Polissacarídeos
3.
Front Immunol ; 14: 1219279, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790939

RESUMO

The transcription factor Fli-1, a member of the ETS family of transcription factors, is implicated in the pathogenesis of lupus disease. Reduced Fli-1 expression in lupus mice leads to decreased renal Cxcl10 mRNA levels and renal infiltrating CXCR3+ T cells that parallels reduced renal inflammatory cell infiltration and renal damage. Inflammatory chemokine CXCL10 is critical for attracting inflammatory cells expressing the chemokine receptor CXCR3. The CXCL10/CXCR3 axis plays a role in the pathogenesis of various inflammatory diseases including lupus. Our data here demonstrate that renal CXCL10 protein levels are significantly lower in Fli-1 heterozygous MRL/lpr mice compared to wild-type MRL/lpr mice. Knockdown of Fli-1 significantly reduced CXCL10 secretion in mouse and human endothelial cells, and human mesangial cells, upon LPS or TNFα stimulation. The Fli-1 inhibitor, Camptothecin, significantly reduced CXCL10 production in human monocyte cells upon interferon stimulation. Four putative Ets binding sites in the Cxcl10 promoter showed significant enrichment for FLI-1; however, FLI-1 did not directly drive transcription from the human or mouse promoters, suggesting FLI-1 may regulate CXCL10 expression indirectly. Our results also suggest that the DNA binding domain of FLI-1 is necessary for regulation of human hCXCR3 promotor activity in human T cells and interactions with co-activators. Together, these results support a role for FLI-1 in modulating the CXCL10-CXCR3 axis by directly or indirectly regulating the expression of both genes to impact lupus disease development. Signaling pathways or drugs that reduce FLI-1 expression may offer novel approaches to lupus treatment.


Assuntos
Células Endoteliais , Proteína Proto-Oncogênica c-fli-1 , Animais , Humanos , Camundongos , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Células Endoteliais/metabolismo , Rim/patologia , Camundongos Endogâmicos MRL lpr , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo
4.
Metabolites ; 12(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35208209

RESUMO

The development of nephritis increases the risk of morbidity and mortality in systemic lupus erythematosus (SLE) patients. While standard induction therapies, such as mycophenolate mofetil (MMF) induce clinical remission (i.e., complete response) in approximately 50% of SLE patients with nephritis, many patients fail to respond. Therapeutic response is often not assessed until 6-12 months after beginning treatment. Those patients that fail to respond to treatment continue to accumulate organ damage, thus, there is a critical need to predict which patients will fail therapy before beginning treatment, allowing physicians to optimize therapy. Our previous studies demonstrated elevated urine, but not serum, glycosphingolipids (GSLs) in SLE patients with nephritis compared to SLE patients without nephritis, suggesting the urine GSLs were derived from the kidney. In this study, we measured the GSLs hexosylceramide and lactosylceramide in extracellular vesicles isolated from longitudinal urine samples of LN patients that were treated with MMF for 12 months. GSL levels were significantly elevated in the baseline samples (prior to treatment) of non-responders compared to complete responders. While a few other proteins measured in the whole urine were higher in non-responders at baseline, only GSLs demonstrated a significant ability to discriminate treatment response in lupus nephritis patients.

5.
Curr Rheumatol Rep ; 23(12): 83, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34985599

RESUMO

PURPOSE OF REVIEW: Mesangial cells are critical for the proper function of the glomerulus, playing roles in structural support and injury repair. However, they are also early responders to glomerular immune complex deposition and contribute to inflammation and fibrosis in lupus nephritis. This review highlights recent studies identifying signaling pathways and mediators in mesangial cell response to lupus-relevant stimuli. RECENT FINDINGS: Anti-dsDNA antibodies, serum, or plasma from individuals with lupus nephritis, or specific pathologic factors activated multiple signaling pathways. These pathways largely included JAK/STAT/SOCS, PI3K/AKT, and MAPK and led to induction of proliferation and expression of multiple proinflammatory cytokines, growth factors, and profibrotic factors. NFκB activation was a common mediator of response. Mesangial cells proliferate and express a wide array of proinflammatory/profibrotic factors in response to a variety of lupus-relevant pathologic stimuli. While some of the responses are similar, the mechanisms involved appear to be diverse depending on the stimulus. Future studies are needed to fully elucidate these mechanisms with respect to the diverse milieu of stimuli.


Assuntos
Nefrite Lúpica , Células Mesangiais , Anticorpos Antinucleares , Fibrose , Humanos , Nefrite Lúpica/patologia , Células Mesangiais/patologia , Fosfatidilinositol 3-Quinases
6.
Lupus Sci Med ; 8(1)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33758010

RESUMO

OBJECTIVE: SLE is a chronic multisystem autoimmune inflammatory disease impacting a number of organs, including the central nervous system (CNS). The pathophysiology of CNS lupus is multifactorial, making diagnosis problematic. Neurocognitive (NC) testing and specific biomarkers to identify the development of neuropsychiatric (NP) symptoms in lupus are needed. Paediatric patients with SLE have high incidence of NP disease . While serum anti-N-methyl-D-aspartate receptor (NMDAR) antibodies have shown promise as a biomarker of NP in adults with SLE, much less is known with regard to paediatric patients with SLE. METHODS: We performed a cross-sectional study in paediatric patients with SLE. Serum NMDAR antibodies were measured and compared with levels in patients with juvenile idiopathic arthritis (JIA). Formal NC testing was performed in accordance with the Childhood Arthritis & Rheumatology Research Alliance neuropsychological core test battery. NC functioning was compared in the two groups and with NMDAR antibody levels. RESULTS: Serum NMDAR antibody levels were significantly higher in paediatric patients with SLE compared with patients with JIA. There were no significant correlations between NMDAR antibody levels and any measure of NC functioning. In an exploratory examination of anti-ribosomal P (RibP) antibody and NC functioning in a subset of patients with SLE, RibP antibody-positive patients exhibited worse scores for Verbal Memory Index and Design Fluency Test Switching compared with RibP antibody-negative patients. A globally significant association between disease status and NC functioning was observed. Specifically, patients with SLE had lower scores compared with patients with JIA for full-scale IQ, letter-word recognition, reading fluency and calculation skills after adjusting for multiple comparisons. CONCLUSION: These collective results suggest that although serum NMDAR may serve as a biomarker, formal NC testing is superior in identifying paediatric patients with SLE with NP manifestations. RibP also may potentially serve as a biomarker of NP manifestations in paediatric patients with SLE. Additional and longitudinal studies are needed.


Assuntos
Vasculite Associada ao Lúpus do Sistema Nervoso Central , Adolescente , Anticorpos Antinucleares , Autoanticorpos , Criança , Estudos Transversais , Feminino , Humanos , Masculino , Receptores de N-Metil-D-Aspartato
7.
Autoimmunity ; 54(3): 163-175, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33749450

RESUMO

The importance of altered glycosphingolipid (GSL) metabolism is increasingly gaining attention as a characteristic of multiple chronic kidney diseases. Previously, we reported elevated levels of GSLs and neuraminidase (NEU) enzyme activity/expression in the urine or kidney of lupus patients and lupus-prone mice, and demonstrated NEU activity mediates the production of cytokines by lupus-prone mouse primary mesangial cells. This mediation occurs in part through TLR4 and p38/ERK MAPK signalling in response to lipopolysaccharide (LPS) and lupus serum (LS). However, the precise role of NEU1, the most abundant NEU in the kidney, is incompletely known. In this study, we investigated the effect of genetically reduced Neu1 levels in vitro and in vivo. Mesangial cells from non-autoimmune prone Neu1+/- C57BL/6 mice had significantly reduced NEU activity, cytokine expression and cytokine secretion in response to LS and LPS, thereby suggesting reducing Neu1 expression may reduce the inflammatory response in lupus nephritis. Disease was assessed in female B6.SLE1/2/3 lupus-prone mice with genetically reduced levels (Neu1+/-) or wild-type levels (Neu1+/+) of Neu1 from 28 to 44 weeks of age along with aged-matched C57BL/6 controls. Renal disease was unexpectedly mild in all B6.SLE1/2/3 mice despite evidence of systemic disease. B6.SLE1/2/3 Neu1+/- mice exhibited significantly reduced levels of renal NEU1 expression and changes in renal α-2,6 linked sialylated N-glycans compared to the Neu1+/+ or healthy C57BL/6 mice, but measures of renal and systemic disease were similar between the B6.SLE1/2/3 Neu1+/+ and Neu1+/- mice. We conclude that NEU1 is the NEU largely responsible for mediating cytokine release by mesangial cells, at least in vitro, but may not be involved in modulating renal GSL levels in vivo or impact onset of nephritis in lupus-prone mice. However, the effect of reduced NEU1 levels on disease may not be appreciated in the mild disease expression in our colony of B6.SLE1/2/3 mice. The impact of the altered renal sialylated N-glycan levels and potential role of NEU1 with respect to established nephritis (late disease) in lupus-prone mice bears further investigation.


Assuntos
Citocinas/metabolismo , Nefrite Lúpica/metabolismo , Células Mesangiais/metabolismo , Neuraminidase/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Rim/efeitos dos fármacos , Rim/metabolismo , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células Mesangiais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL
8.
Immunology ; 162(4): 418-433, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33314123

RESUMO

Previously, we demonstrated neuraminidase (NEU) activity or NEU1 expression, specifically, is increased in the kidneys of lupus mice and urine of human patients with nephritis. Additionally, NEU activity mediates IL-6 secretion from lupus-prone MRL/lpr primary mouse mesangial cells (MCs) in response to an IgG mimic. IL-6 mediates glomerular inflammation and promotes tissue damage in patients and mouse strains with lupus nephritis. This study further elucidates the mechanisms by which NEU activity and NEU1 specifically mediates the release of IL-6 and other cytokines from lupus-prone MCs. We demonstrate significantly increased release of multiple cytokines and NEU activity in MRL/lpr MCs in response to serum from MRL/lpr mice (lupus serum). Inhibiting NEU activity significantly reduced secretion of three of those cytokines: IL-6, GM-CSF and MIP1α. Message levels of Il-6 and Gm-csf were also increased in response to lupus serum and reduced when NEU activity was inhibited. Neutralizing antibodies to cell-surface receptors and MAPK inhibitors in lupus serum- or LPS-stimulated MCs indicate TLR4 and p38 or ERK MAP kinase signalling play key roles in the NEU-mediated secretion of IL-6. Significantly reduced IL-6 release was observed in C57BL/6 (B6) Neu1+/+ primary MCs compared with wild-type (Neu1+/+) B6 MCs in response to lupus serum. Additional results show inhibiting NEU activity significantly increases sialic acid-containing N-glycan levels. Together, our novel observations support a role for NEU activity, and specifically NEU1, in mediating release of IL-6 from lupus-prone MCs in response to lupus serum through a TLR4-p38/ERK MAPK signalling pathway that likely includes desialylation of glycoproteins.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Rim/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Nefrite Lúpica/metabolismo , Células Mesangiais/fisiologia , Neuraminidase/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Neuraminidase/genética , Soro/metabolismo , Transdução de Sinais
9.
PLoS One ; 15(3): e0230499, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32187230

RESUMO

Glycosphingolipids (GSLs) hexosylceramides and lactosylceramides are elevated in lupus mice and human patients with nephritis. Whereas other renal diseases characterized by increased GSL levels are thought to be a result of upregulated GSL synthesis, our results suggest elevated hexosylceramides and lactosylceramides in lupus nephritis is a result of increased catabolism of ganglioside GM3 due to significantly increased neuraminidase (NEU) activity. Thus, we hypothesized GM3 would be decreased in lupus nephritis kidneys and blocking NEU activity would reduce GSLs and improve disease in lupus mice. Female MRL/lpr lupus mice were treated with water or the NEU inhibitor oseltamivir phosphate at the onset of proteinuria to block GSL catabolism. Age-matched (non-nephritic) female MRL/MpJ lupus mice served as controls. Renal GM3 levels were significantly higher in the nephritic MRL/lpr water-treated mice compared to non-nephritic MRL/MpJ mice, despite significantly increased renal NEU activity. Blocking GSL catabolism increased, rather than decreased, renal and urine GSL levels and disease was not significantly impacted. A pilot study treating MRL/lpr females with GlcCer synthase inhibitor Genz-667161 to block GSL synthesis resulted in a strong significant negative correlation between Genz-667161 dose and renal GSL hexosylceramide and GM3 levels. Splenomegaly was negatively correlated and serum IgG levels were marginally correlated with increasing Genz-667161 dose. These results suggest accumulation of renal GM3 may be due to dysregulation of one or more of the GSL ganglioside pathways and inhibiting GSL synthesis, but not catabolism, may be a therapeutic approach for treating lupus nephritis.


Assuntos
Glicoesfingolipídeos/metabolismo , Nefrite Lúpica/tratamento farmacológico , Nefrite Lúpica/metabolismo , Animais , Ceramidas/metabolismo , Feminino , Gangliosídeo G(M3)/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Lactosilceramidas/metabolismo , Camundongos , Camundongos Endogâmicos MRL lpr , Neuraminidase/metabolismo , Oseltamivir/análogos & derivados , Oseltamivir/uso terapêutico , Ácidos Fosforosos/uso terapêutico , Projetos Piloto , Proteinúria/tratamento farmacológico , Proteinúria/metabolismo
10.
Biochim Biophys Acta Mol Basis Dis ; 1866(3): 165608, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31740401

RESUMO

PURPOSE: Extracellular vesicles (EVs) can mediate long-distance communication in polarized RPE monolayers. Specifically, EVs from oxidatively stressed donor cells (stress EVs) rapidly reduced barrier function (transepithelial resistance, TER) in naïve recipient monolayers, when compared to control EVs. This effect on TER was dependent on dynamin-mediated EV uptake, which occurred rapidly with EVs from oxidatively stressed donor cells. Here, we further determined molecular mechanisms involved in uptake of EVs by naïve RPE cells. METHODS: RPE cells were grown as monolayers in media supplemented with 1% FBS followed by transfer to FBS-free media. Cultures were used to collect control or stress EVs upon treatment with H2O2, others served as naïve recipient cells. In recipient monolayers, TER was used to monitor EV-uptake-based activity, live-cell imaging confirmed uptake. EV surface proteins were quantified by protein chemistry. RESULTS: Clathrin-independent, lipid raft-mediated internalization was excluded as an uptake mechanism. Known ligand-receptor interactions involved in clathrin-dependent endocytosis include integrins and proteoglycans. Desialylated glycans and integrin-receptors on recipient cells were necessary for EV uptake and subsequent reduction of TER in recipient cells. Protein quantifications confirmed elevated levels of ligands and neuraminidase on stress EVs. However, control EVs could confer activity in the TER assay if exogenous neuraminidase or additional ligand was provided. CONCLUSIONS: In summary, while EVs from both stressed cells and control contain cargo to communicate stress messages to naive RPE cells, stress EVs contain surface ligands that confer rapid uptake by recipient cells. We propose that EVs potentially contribute to RPE dysfunction in aging and disease.


Assuntos
Transporte Biológico/fisiologia , Células Epiteliais/metabolismo , Vesículas Extracelulares/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Pigmentos da Retina/metabolismo , Linhagem Celular , Clatrina/metabolismo , Endocitose/fisiologia , Humanos , Peróxido de Hidrogênio/metabolismo , Ligantes , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/fisiologia
11.
J Mass Spectrom ; 55(4): e4490, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31860772

RESUMO

Clear-cell renal cell carcinoma (ccRCC) presents challenges to clinical management because of late-stage detection, treatment resistance, and frequent disease recurrence. Metabolically, ccRCC has a well-described Warburg effect utilization of glucose, but how this affects complex carbohydrate synthesis and alterations to protein and cell surface glycosylation is poorly defined. Using an imaging mass spectrometry approach, N-glycosylation patterns and compositional differences were assessed between tumor and nontumor regions of formalin-fixed clinical ccRCC specimens and tissue microarrays. Regions of normal kidney tissue samples were also evaluated for N-linked glycan-based distinctions between cortex, medullar, glomeruli, and proximal tubule features. Most notable was the proximal tubule localized detection of abundant multiantennary N-glycans with bisecting N-acetylglucosamine and multziple fucose residues. These glycans are absent in ccRCC tissues, while multiple tumor-specific N-glycans were detected with tri- and tetra-antennary structures and varying levels of fucosylation and sialylation. A polycystic kidney disease tissue was also characterized for N-glycan composition, with specific nonfucosylated glycans detected in the cyst fluid regions. Complementary to the imaging mass spectrometry analyses was an assessment of transcriptomic gene array data focused on the fucosyltransferase gene family and other glycosyltransferase genes. The transcript levels of the FUT3 and FUT6 genes responsible for the enzymes that add fucose to N-glycan antennae were significantly decreased in all ccRCC tissues relative to matching nontumor tissues. These striking differences in glycosylation associated with ccRCC could lead to new mechanistic insight into the glycobiology underpinning kidney malignancies and suggest the potential for new therapeutic interventions and diagnostic markers.


Assuntos
Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Rim/metabolismo , Polissacarídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Carcinoma de Células Renais/química , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/genética , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Regulação Neoplásica da Expressão Gênica , Glicômica/métodos , Glicosilação , Humanos , Rim/química , Rim/diagnóstico por imagem , Neoplasias Renais/química , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/genética , Doenças Renais Policísticas/diagnóstico por imagem , Doenças Renais Policísticas/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Análise Serial de Tecidos
12.
J Womens Health (Larchmt) ; 27(12): 1474-1481, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30251910

RESUMO

Background: Within free-standing academic medical centers, women continue to be underrepresented at upper faculty ranks and in leadership positions. A career development program (CDP) at the Medical University of South Carolina (MUSC) was implemented with the goal of improving the number of women in the upper ranks and in leadership positions. The CDP was initiated in 2013 as a 2-day program. Beginning in 2015, a half-day promotion-focused program was offered alternating with the 2-day program. Materials and Methods: The CDP has served ∼200 women from 2013 to 2017 and was evaluated for reaction and learning through postprogram surveys. Promotion success of ∼160 women who attended at least one of the programs through 2016 was assessed through an additional survey. Promotion information for ∼3000 faculty members during the same 2013-2016 period (post-CDP), as well as a 4-year time period before implementation of the CDP (pre-CDP), was collected using university-level personnel data. Results: The majority of CDP attendees (94%) indicated overall satisfaction with the program and would recommend the program to a colleague. Of the 137 CDP attendees still employed at MUSC in 2017, 50 had applied for promotion and 42 (84%) were successfully promoted. Among all the MUSC faculty, overall and rank-sepcific promotion rates for women and men were similar during the post-CDP time period and there was a significant increase in the promotion rate of women to Full Professor from pre-CDP to post-CDP time periods. Conclusions: CDP attendees were overwhelmingly satisfied with the program and were highly successful in being promoted. Since the overall university promotion rates of women and men were similar during the post-CDP time period and women are currently underrepresented at the upper faculty ranks, parity between men and women will likely not be achievable without additional programs to retain and/or recruit women in the upper ranks.


Assuntos
Centros Médicos Acadêmicos/organização & administração , Docentes de Medicina/organização & administração , Liderança , Médicas/estatística & dados numéricos , Desenvolvimento de Pessoal/organização & administração , Adulto , Escolha da Profissão , Mobilidade Ocupacional , Feminino , Humanos , Pessoa de Meia-Idade , Desenvolvimento de Programas , Avaliação de Programas e Projetos de Saúde , Estudos Retrospectivos , Inquéritos e Questionários , Estados Unidos
13.
Am J Physiol Renal Physiol ; 314(4): F630-F642, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357434

RESUMO

The development of nephritis is a leading cause of morbidity and mortality in lupus patients. Although the general pathophysiological progression of lupus nephritis is known, the molecular mediators and mechanisms are incompletely understood. Previously, we demonstrated that the glycosphingolipid (GSL) catabolic pathway is elevated in the kidneys of MRL/lpr lupus mice and human lupus patients with nephritis. Specifically, the activity of neuraminidase (NEU) and expression of Neu1, an enzyme in the GSL catabolic pathway is significantly increased. To better understand the role and mechanisms by which this pathway contributes to the progression of LN, we analyzed the expression and effects of NEU activity on the function of MRL/lpr lupus-prone mesangial cells (MCs). We demonstrate that NEU1 and NEU3 promote IL-6 production in MES13 MCs. Neu1 expression, NEU activity, and IL-6 production are significantly increased in stimulated primary MRL/lpr lupus-prone MCs, and blocking NEU activity inhibits IL-6 production. NEU1 and NEU3 expression overlaps IgG deposits in MCs in vitro and in renal sections from nephritic MRL/lpr mice. Together, our results suggest that NEU activity mediates IL-6 production in lupus-prone MCs possibly through an IgG-receptor complex signaling pathway.


Assuntos
Interleucina-6/metabolismo , Nefrite Lúpica/enzimologia , Células Mesangiais/enzimologia , Neuraminidase/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Modelos Animais de Doenças , Feminino , Inibidores de Glicosídeo Hidrolases/farmacologia , Imunoglobulina G/farmacologia , Nefrite Lúpica/sangue , Nefrite Lúpica/tratamento farmacológico , Nefrite Lúpica/patologia , Masculino , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/patologia , Camundongos Endogâmicos MRL lpr , Neuraminidase/antagonistas & inibidores , Neuraminidase/genética , Receptores de IgG/metabolismo , Transdução de Sinais , Regulação para Cima
14.
Eur J Immunol ; 46(10): 2322-2332, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27431361

RESUMO

Fli-1 has emerged as a critical regulator of inflammatory mediators, including MCP-1, CCL5, and IL-6. The cytokine, granulocyte colony stimulating factor (G-CSF) regulates neutrophil precursor maturation and survival, and activates mature neutrophils. Previously, a significant decrease in neutrophil infiltration into the kidneys of Fli-1+/- lupus-prone mice was observed. In this study, a significant decrease in G-CSF protein expression was detected in stimulated murine and human endothelial cells when expression of Fli-1 was inhibited. The murine G-CSF promoter contains numerous putative Fli-1 binding sites and several regions within the proximal promoter are significantly enriched for Fli-1 binding. Transient transfection assays indicate that Fli-1 drives transcription from the G-CSF promoter and mutation of the Fli-1 DNA binding domain resulted in a 94% loss of transcriptional activation. Mutation of a known acetylation site, led to a significant increase in G-CSF promoter activation. The histone acetyltransferases p300/CBP and p300/CBP associated factor (PCAF) significantly decrease Fli-1 specific activation of the G-CSF promoter. Thus, acetylation appears to be an important mechanism behind Fli-1 driven activation of the G-CSF promoter. These results further support the theory that Fli-1 plays a major role in the regulation of several inflammatory mediators, ultimately affecting inflammatory disease pathogenesis.


Assuntos
Acetilação , Células Endoteliais/fisiologia , Fator Estimulador de Colônias de Granulócitos/metabolismo , Inflamação/imunologia , Neutrófilos/fisiologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Regulação da Expressão Gênica/genética , Fator Estimulador de Colônias de Granulócitos/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Mutação/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Interferente Pequeno/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
15.
J Immunol ; 195(12): 5551-60, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26538397

RESUMO

The ETS factor Friend leukemia virus integration 1 (FLI1) is a key modulator of lupus disease expression. Overexpressing FLI1 in healthy mice results in the development of an autoimmune kidney disease similar to that observed in lupus. Lowering the global levels of FLI1 in two lupus strains (Fli1(+/-)) significantly improved kidney disease and prolonged survival. T cells from MRL/lpr Fli1(+/-) lupus mice have reduced activation and IL-4 production, neuraminidase 1 expression, and the levels of the glycosphingolipid lactosylceramide. In this study, we demonstrate that MRL/lpr Fli1(+/-) mice have significantly decreased renal neuraminidase 1 and lactosylceramide levels. This corresponds with a significant decrease in the number of total CD3(+) cells, as well as CD4(+) and CD44(+)CD62L(-) T cell subsets in the kidney of MRL/lpr Fli1(+/-) mice compared with the Fli1(+/+) nephritic mice. We further demonstrate that the percentage of CXCR3(+) T cells and Cxcr3 message levels in T cells are significantly decreased and correspond with a decrease in renal CXCR3(+) cells and in Cxcl9 and Cxcl10 expression in the MRL/lpr Fli1(+/-) compared with the Fli1(+/+) nephritic mice. Our results suggest that reducing the levels of FLI1 in MRL/lpr mice may be protective against development of nephritis in part through downregulation of CXCR3, reducing renal T cell infiltration and glycosphingolipid levels.


Assuntos
Glicoesfingolipídeos/metabolismo , Rim/fisiologia , Nefrite/tratamento farmacológico , Proteína Proto-Oncogênica c-fli-1/metabolismo , Receptores CXCR3/metabolismo , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Animais , Antígenos CD/metabolismo , Movimento Celular/efeitos dos fármacos , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Regulação da Expressão Gênica , Humanos , Rim/efeitos dos fármacos , Lactosilceramidas/metabolismo , Camundongos , Camundongos Endogâmicos MRL lpr , Camundongos Knockout , Nefrite/imunologia , Neuraminidase/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Receptores CXCR3/genética
16.
Invest Ophthalmol Vis Sci ; 56(3): 1850-63, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25593023

RESUMO

PURPOSE: Complement factor B (CFB) is a required component of the alternative pathway (AP) of complement, and CFB polymorphisms are associated with age-related macular degeneration (AMD) risk. Complement factor B is made in the liver, but expression has also been detected in retina and retinal pigment epithelium (RPE)-choroid. We investigated whether production of CFB by the RPE can promote AP activation in mouse choroidal neovascularization (CNV). METHODS: Transgenic mice expressing CFB under the RPE65 promoter were generated and crossed onto factor B-deficient (CFB-KO) mice. Biological activity was determined in vitro using RPE monolayers and in vivo using laser-induced CNV. Contribution of systemic CFB was investigated using CFB-KO reconstituted with CFB-sufficient serum. RESULTS: Transgenic mice (CFB-tg) expressed CFB in RPE-choroid; no CFB was detected in serum. Cultured CFB-tg RPE monolayers secreted CFB apically and basally upon exposure to oxidative stress that was biologically active. Choroidal neovascularization sizes were comparable between wild-type and CFB-tg mice, but significantly increased when compared to lesions in CFB-KO mice. Injections of CFB-sufficient serum into CFB-KO mice resulted in partial reconstitution of systemic AP activity and significantly increased CNV size. CONCLUSIONS: Mouse RPE cells express and secrete CFB sufficient to promote RPE damage and CNV. This further supports that local complement production may regulate disease processes; however, the reconstitution experiments suggest that additional components may be sequestered from the bloodstream. Understanding the process of ocular complement production and regulation will further our understanding of the AMD disease process and the requirements of a complement-based therapeutic.


Assuntos
Corioide/patologia , Neovascularização de Coroide/genética , Fator B do Complemento/genética , Via Alternativa do Complemento/genética , Regulação da Expressão Gênica , RNA Mensageiro/genética , Animais , Western Blotting , Células Cultivadas , Neovascularização de Coroide/etiologia , Neovascularização de Coroide/metabolismo , Fator B do Complemento/biossíntese , Modelos Animais de Doenças , Eletrorretinografia , Ensaio de Imunoadsorção Enzimática , Lasers/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/fisiopatologia , Tomografia de Coerência Óptica
17.
J Am Soc Nephrol ; 26(6): 1402-13, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25270066

RESUMO

Nearly one half of patients with lupus develop glomerulonephritis (GN), which often leads to renal failure. Although nephritis is diagnosed by the presence of proteinuria, the pathology of nephritis can fall into one of five classes defined by different forms of tissue injury, and the mechanisms involved in pathogenesis are not completely understood. Glycosphingolipids are abundant in the kidney, have roles in many cellular functions, and were shown to be involved in other renal diseases. Here, we show dysfunctional glycosphingolipid metabolism in patients with lupus nephritis and MRL/lpr lupus mice. Specifically, we found that glucosylceramide (GlcCer) and lactosylceramide (LacCer) levels are significantly higher in the kidneys of nephritic MRL/lpr lupus mice than the kidneys of non-nephritic lupus mice or healthy controls. This elevation may be, in part, caused by altered transcriptional regulation and/or activity of LacCer synthase (GalT5) and neuraminidase 1, enzymes that mediate glycosphingolipid metabolism. We show increased neuraminidase 1 activity early during the progression of nephritis (before significant elevation of GlcCer and LacCer in the kidney). Elevated levels of urinary LacCer were detected before proteinuria in lupus mice. Notably, LacCer levels were higher in the urine and kidneys of patients with lupus and nephritis than patients with lupus without nephritis or healthy controls. Together, these results show early and significant dysfunction of the glycosphingolipid metabolic pathway in the kidneys of lupus mice and patients with lupus nephritis and suggest that molecules in this pathway may serve as early markers in lupus nephritis.


Assuntos
Glicoesfingolipídeos/metabolismo , Nefrite Lúpica/metabolismo , Nefrite Lúpica/patologia , Neuraminidase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Análise de Variância , Animais , Biomarcadores/análise , Biópsia por Agulha , Modelos Animais de Doenças , Progressão da Doença , Seguimentos , Humanos , Immunoblotting , Imuno-Histoquímica , Testes de Função Renal , Nefrite Lúpica/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Neuraminidase/genética , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Urinálise
18.
Mol Immunol ; 63(2): 566-73, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25108845

RESUMO

Regulation of proinflammatory cytokines and chemokines is a primary role of the innate immune response. MCP-1 is a chemokine that recruits immune cells to sites of inflammation. Expression of MCP-1 is reduced in primary kidney endothelial cells from mice with a heterozygous knockout of the Fli-1 transcription factor. Fli-1 is a member of the Ets family of transcription factors, which are evolutionarily conserved across several organisms including Drosophilla, Xenopus, mouse and human. Ets family members bind DNA through a consensus sequence GGAA/T, or Ets binding site (EBS). Fli-1 binds to EBSs within the endogenous MCP-1 promoter by ChIP assay. In this study, transient transfection assays indicate that the Fli-1 gene actively promotes transcription from the MCP-1 gene promoter in a dose-dependent manner. Mutation of the DNA binding domain of Fli-1 demonstrated that Fli-1 activates transcription of MCP-1 both directly, by binding to the promoter, and indirectly, likely through interactions with other transcription factors. Another Ets transcription factor, Ets-1, was also tested, but failed to promote transcription. While Ets-1 failed to drive transcription independently, a weak synergistic activation of the MCP-1 promoter was observed between Ets-1 and Fli-1. In addition, Fli-1 and the NFκB family member p65 were found to interact synergistically to activate transcription from the MCP-1 promoter, while Sp1 and p50 inhibit this interaction. Deletion studies identified that EBSs in the distal and proximal MCP-1 promoter are critical for Fli-1 activation from the MCP-1 promoter. Together, these results demonstrate that Fli-1 is a novel regulator of the proinflammatory chemokine MCP-1, that interacts with other transcription factors to form a complex transcriptional mechanism for the activation of MCP-1 and mediation of the inflammatory response.


Assuntos
Quimiocina CCL2/genética , Regiões Promotoras Genéticas , Proteína Proto-Oncogênica c-fli-1/metabolismo , Animais , Sítios de Ligação/genética , Humanos , Camundongos , Mutação/genética , Células NIH 3T3 , Ligação Proteica , Proteína Proto-Oncogênica c-fli-1/genética , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição RelA/metabolismo , Transcrição Gênica , Ativação Transcricional/genética
19.
J Immunol ; 193(6): 2661-8, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25098295

RESUMO

The friend leukemia insertion site 1 (Fli-1) transcription factor, an Ets family member, is implicated in the pathogenesis of systemic lupus erythematosus in human patients and murine models of lupus. Lupus-prone mice with reduced Fli-1 expression have significantly less nephritis, prolonged survival, and decreased infiltrating inflammatory cells into the kidney. Inflammatory chemokines, including CCL5, are critical for attracting inflammatory cells. In this study, decreased CCL5 mRNA expression was observed in kidneys of lupus-prone NZM2410 mice with reduced Fli-1 expression. CCL5 protein expression was significantly decreased in endothelial cells transfected with Fli-1-specific small interfering RNA compared with controls. Fli-1 binds to endogenous Ets binding sites in the distal region of the CCL5 promoter. Transient transfection assays demonstrate that Fli-1 drives transcription from the CCL5 promoter in a dose-dependent manner. Both Ets1, another Ets family member, and Fli-1 drive transcription from the CCL5 promoter, although Fli-1 transactivation was significantly stronger. Ets1 acts as a dominant-negative transcription factor for Fli-1, indicating that they may have at least one DNA binding site in common. Systematic deletion of DNA binding sites demonstrates the importance of the sites located within a 225-bp region of the promoter. Mutation of the Fli-1 DNA binding domain significantly reduces transactivation of the CCL5 promoter by Fli-1. We identified a novel regulator of transcription for CCL5. These results suggest that Fli-1 is a novel and critical regulator of proinflammatory chemokines and affects the pathogenesis of disease through the regulation of factors that recruit inflammatory cells to sites of inflammation.


Assuntos
Quimiocina CCL5/genética , DNA/química , Células Endoteliais/imunologia , Proteína Proto-Oncogênica c-fli-1/genética , Ativação Transcricional/genética , Células 3T3 , Animais , Sítios de Ligação/genética , Sítios de Ligação/imunologia , Linhagem Celular , Quimiocina CCL5/biossíntese , DNA/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Células Endoteliais/citologia , Inflamação/genética , Inflamação/imunologia , Rim/citologia , Rim/imunologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Camundongos Transgênicos , Nefrite/genética , Regiões Promotoras Genéticas , Proteína Proto-Oncogênica c-ets-1/genética , Proteína Proto-Oncogênica c-fli-1/biossíntese , Proteína Proto-Oncogênica c-fli-1/imunologia , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Interferente Pequeno , Transfecção
20.
PLoS One ; 8(9): e75175, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040398

RESUMO

Systemic Lupus erythematosus (SLE) is an autoimmune disease caused, in part, by abnormalities in cells of the immune system including B and T cells. Genetically reducing globally the expression of the ETS transcription factor FLI1 by 50% in two lupus mouse models significantly improves disease measures and survival through an unknown mechanism. In this study we analyze the effects of reducing FLI1 in the MRL/lpr lupus prone model on T cell function. We demonstrate that adoptive transfer of MRL/lpr Fli1(+/+) or Fli1(+/-) T cells and B cells into Rag1-deficient mice results in significantly decreased serum immunoglobulin levels in animals receiving Fli1(+/-) lupus T cells compared to animals receiving Fli1(+/+) lupus T cells regardless of the genotype of co-transferred lupus B cells. Ex vivo analyses of MRL/lpr T cells demonstrated that Fli1(+/-) T cells produce significantly less IL-4 during early and late disease and exhibited significantly decreased TCR-specific activation during early disease compared to Fli1(+/+) T cells. Moreover, the Fli1(+/-) T cells expressed significantly less neuraminidase 1 (Neu1) message and decreased NEU activity during early disease and significantly decreased levels of glycosphingolipids during late disease compared to Fli1(+/+) T cells. FLI1 dose-dependently activated the Neu1 promoter in mouse and human T cell lines. Together, our results suggest reducing FLI1 in lupus decreases the pathogenicity of T cells by decreasing TCR-specific activation and IL-4 production in part through the modulation of glycosphingolipid metabolism. Reducing the expression of FLI1 or targeting the glycosphingolipid metabolic pathway in lupus may serve as a therapeutic approach to treating lupus.


Assuntos
Glicoesfingolipídeos/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transferência Adotiva , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Proteínas de Homeodomínio/metabolismo , Humanos , Interleucina-4/biossíntese , Células Jurkat , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos MRL lpr , Proteína Proto-Oncogênica c-fli-1/deficiência , Receptores de Antígenos de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA