Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(3): 1583-1590, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29260812

RESUMO

Naturally-occurring inorganic ammonium ions have been recently reported as efficient catalysts for some organic reactions in water, which contributes to the understanding of the chemistry in some natural environments (soils, seawater, atmospheric aerosols, …) and biological systems, and is also potentially interesting for green chemistry as many of their salts are cheap and non-toxic. In this work, the effect of NH4+ ions on the hydrolysis of small epoxides in water was studied kinetically. The presence of NH4+ increased the hydrolysis rate by a factor of 6 to 25 compared to pure water and these catalytic effects were shown not to result from other ions, counter-ions or from acid or base catalysis, general or specific. The small amounts of amino alcohols produced in the reactions were identified as the actual catalysts by obtaining a strong acceleration of the reactions when adding these compounds directly to the epoxides in water. Replacing the amino alcohols by other strong hydrogen-bond donors, such as trifluoroethanol (TFE) or hexafluoroisopropanol (HFIP) gave the same results, demonstrating that the kinetics of these reactions was driven by hydrogen-bond catalysis. Because of the presence of many hydrogen-bond donors in natural environments (for instance amines and hydroxy-containing compounds), hydrogen-bond catalysis is likely to contribute to many reaction rates in these environments.

2.
Phys Chem Chem Phys ; 17(31): 20416-24, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26174881

RESUMO

Imidazoles have numerous applications in pharmacology, chemistry, optics and electronics, making the development of their environmentally-friendly synthetic procedures worthwhile. In this work, the formation of imidazole, imidazole-2-carboxaldehyde, and 2,2-bis-1H-imidazole was investigated in the self-reaction of glyoxal and its cross-reactions with each of these compounds in aqueous solutions of inorganic ammonium salts at pH =7. Such conditions are relevant both as cheap and environmentally-friendly synthetic procedures and for the chemistry of natural environments where NH4(+) is abundant, such as in atmospheric aerosols. These reactions were investigated both by (1)H-NMR and UV-Vis absorption spectroscopy at room temperature with the objective to determine the formation pathways of the three imidazoles and the parameters affecting their yields, to identify the optimal conditions for their synthesis. The results show that only the simplest imidazole is produced by the self-reaction of glyoxal and that imidazole-2-carboxaldehyde and 2,2-bis-1H-imidazole are produced by cross-reactions of glyoxal with imidazole and imidazole-2-carboxaldehyde, respectively. The yields of imidazole-2-carboxaldehyde and 2,2-bis-1H-imidazole formed by the cross-reactions were close to unity, but the yield of imidazole formed by the self-reaction of glyoxal, YIm, was small and varied inversely with the initial glyoxal concentration, [G]0: YIm > 10% only for [G]0 < 0.1 M. The latter result was attributed to the kinetic competition between the imidazole-forming condensation pathway and the acetal/oligomer formation pathway of the glyoxal self-reaction and constitutes a bottleneck for the formation of higher imidazoles. Other parameters such as pH and the NH4(+) concentration did not affect the yields. Thus, by maintaining small glyoxal concentrations, high imidazole yields can be achieved in environmentally-friendly aqueous ammonium solutions at neutral pH. Under the same conditions, higher yields are expected expected from substituted carbonyl compounds, regardless of their concentration, as they produce less acetals.


Assuntos
Compostos de Amônio/química , Glioxal/química , Imidazóis/química , Água/química , Concentração de Íons de Hidrogênio
3.
Environ Sci Process Impacts ; 16(6): 1413-21, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24777436

RESUMO

This work presents the application of a new method to facilitate the distinction between biologically produced (primary) and atmospherically produced (secondary) organic compounds in ambient aerosols based on their chirality. The compounds chosen for this analysis were the stereomers of 2-methyltetraols, (2R,3S)- and (2S,3R)-methylerythritol, (l- and d-form, respectively), and (2S,3S)- and (2R,3R)-methylthreitol (l- and d-form), shown previously to display some enantiomeric excesses in atmospheric aerosols, thus to have at least a partial biological origin. In this work PM10 aerosol fractions were collected in a remote tropical rainforest environment near Manaus, Brazil, between June 2008 and June 2009 and analysed. Both 2-methylerythritol and 2-methylthreitol displayed a net excess of one enantiomer (either the l- or the d-form) in 60 to 72% of these samples. These net enantiomeric excesses corresponded to compounds entirely biological but accounted for only about 5% of the total 2-methyltetrol mass in all the samples. Further analysis showed that, in addition, a large mass of the racemic fractions (equal mixtures of d- and l-forms) was also biological. Estimating the contribution of secondary reactions from the isomeric ratios measured in the samples (=ratios 2-methylthreitol over 2-methylerythritol), the mass fraction of secondary methyltetrols in these samples was estimated to a maximum of 31% and their primary fraction to a minimum of 69%. Such large primary fractions could have been expected in PM10 aerosols, largely influenced by biological emissions, and would now need to be investigated in finer aerosols. This work demonstrates the effectiveness of chiral and isomeric analyses as the first direct tool to assess the primary and secondary fractions of organic aerosols.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Eritritol/análogos & derivados , Atmosfera/química , Brasil , Eritritol/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...