Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 6647, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459787

RESUMO

Anterior cruciate ligament (ACL) deficient and reconstructed knees display altered biomechanics during gait. Identifying significant gait changes is important for understanding normal and ACL function and is typically performed by statistical approaches. This paper focuses on the development of an explainable machine learning (ML) empowered methodology to: (i) identify important gait kinematic, kinetic parameters and quantify their contribution in the diagnosis of ACL injury and (ii) investigate the differences in sagittal plane kinematics and kinetics of the gait cycle between ACL deficient, ACL reconstructed and healthy individuals. For this aim, an extensive experimental setup was designed in which three-dimensional ground reaction forces and sagittal plane kinematic as well as kinetic parameters were collected from 151 subjects. The effectiveness of the proposed methodology was evaluated using a comparative analysis with eight well-known classifiers. Support Vector Machines were proved to be the best performing model (accuracy of 94.95%) on a group of 21 selected biomechanical parameters. Neural Networks accomplished the second best performance (92.89%). A state-of-the-art explainability analysis based on SHapley Additive exPlanations (SHAP) and conventional statistical analysis were then employed to quantify the contribution of the input biomechanical parameters in the diagnosis of ACL injury. Features, that would have been neglected by the traditional statistical analysis, were identified as contributing parameters having significant impact on the ML model's output for ACL injury during gait.


Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Lesões do Ligamento Cruzado Anterior/diagnóstico , Fenômenos Biomecânicos , Marcha , Humanos , Articulação do Joelho , Aprendizado de Máquina
3.
Healthcare (Basel) ; 10(1)2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35052311

RESUMO

The global spread of COVID-19 led the World Health Organization to declare a pandemic on 11 March 2020. To decelerate this spread, countries have taken strict measures that have affected the lifestyles and economies. Various studies have focused on the identification of COVID-19's impact on the mental health of children and adolescents via traditional statistical approaches. However, a machine learning methodology must be developed to explain the main factors that contribute to the changes in the mood state of children and adolescents during the first lockdown. Therefore, in this study an explainable machine learning pipeline is presented focusing on children and adolescents in Greece, where a strict lockdown was imposed. The target group consists of children and adolescents, recruited from children and adolescent mental health services, who present mental health problems diagnosed before the pandemic. The proposed methodology imposes: (i) data collection via questionnaires; (ii) a clustering process to identify the groups of subjects with amelioration, deterioration and stability to their mood state; (iii) a feature selection process to identify the most informative features that contribute to mood state prediction; (iv) a decision-making process based on an experimental evaluation among classifiers; (v) calibration of the best-performing model; and (vi) a post hoc interpretation of the features' impact on the best-performing model. The results showed that a blend of heterogeneous features from almost all feature categories is necessary to increase our understanding regarding the effect of the COVID-19 pandemic on the mood state of children and adolescents.

4.
Phys Eng Sci Med ; 45(1): 219-229, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35099771

RESUMO

Knee Osteoarthritis (ΚΟΑ) is a degenerative joint disease of the knee that results from the progressive loss of cartilage. Due to KOA's multifactorial nature and the poor understanding of its pathophysiology, there is a need for reliable tools that will reduce diagnostic errors made by clinicians. The existence of public databases has facilitated the advent of advanced analytics in KOA research however the heterogeneity of the available data along with the observed high feature dimensionality make this diagnosis task difficult. The objective of the present study is to provide a robust Feature Selection (FS) methodology that could: (i) handle the multidimensional nature of the available datasets and (ii) alleviate the defectiveness of existing feature selection techniques towards the identification of important risk factors which contribute to KOA diagnosis. For this aim, we used multidimensional data obtained from the Osteoarthritis Initiative database for individuals without or with KOA. The proposed fuzzy ensemble feature selection methodology aggregates the results of several FS algorithms (filter, wrapper and embedded ones) based on fuzzy logic. The effectiveness of the proposed methodology was evaluated using an extensive experimental setup that involved multiple competing FS algorithms and several well-known ML models. A 73.55% classification accuracy was achieved by the best performing model (Random Forest classifier) on a group of twenty-one selected risk factors. Explainability analysis was finally performed to quantify the impact of the selected features on the model's output thus enhancing our understanding of the rationale behind the decision-making mechanism of the best model.


Assuntos
Osteoartrite do Joelho , Algoritmos , Lógica Fuzzy , Humanos , Articulação do Joelho , Aprendizado de Máquina , Osteoartrite do Joelho/diagnóstico por imagem
5.
Sensors (Basel) ; 21(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34883930

RESUMO

Global competition among businesses imposes a more effective and low-cost supply chain allowing firms to provide products at a desired quality, quantity, and time, with lower production costs. The latter include holding cost, ordering cost, and backorder cost. Backorder occurs when a product is temporarily unavailable or out of stock and the customer places an order for future production and shipment. Therefore, stock unavailability and prolonged delays in product delivery will lead to additional production costs and unsatisfied customers, respectively. Thus, it is of high importance to develop models that will effectively predict the backorder rate in an inventory system with the aim of improving the effectiveness of the supply chain and, consequentially, the performance of the company. However, traditional approaches in the literature are based on stochastic approximation, without incorporating information from historical data. To this end, machine learning models should be employed for extracting knowledge of large historical data to develop predictive models. Therefore, to cover this need, in this study, the backorder prediction problem was addressed. Specifically, various machine learning models were compared for solving the binary classification problem of backorder prediction, followed by model calibration and a post-hoc explainability based on the SHAP model to identify and interpret the most important features that contribute to material backorder. The results showed that the RF, XGB, LGBM, and BB models reached an AUC score of 0.95, while the best-performing model was the LGBM model after calibration with the Isotonic Regression method. The explainability analysis showed that the inventory stock of a product, the volume of products that can be delivered, the imminent demand (sales), and the accurate prediction of the future demand can significantly contribute to the correct prediction of backorders.


Assuntos
Aprendizado de Máquina
6.
Int J Med Inform ; 156: 104614, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34662820

RESUMO

OBJECTIVE: Feature selection (FS) is a crucial and at the same time challenging processing step that aims to reduce the dimensionality of complex classification or regression problems. Various techniques have been proposed in the literature to address this challenge with emphasis to medical applications. However, each one of the existing FS algorithms come with its own advantages and disadvantages introducing a certain level of bias. MATERIALS AND METHODS: To avoid bias and alleviate the defectiveness of single feature selection results, an ensemble FS methodology is proposed in this paper that aggregates the results of several FS algorithms (filter, wrapper and embedded ones). Fuzzy logic is employed to combine multiple feature importance scores thus leading to a more robust selection of informative features. The proposed fuzzy ensemble FS methodology was applied on the problem of knee osteoarthritis (KOA) prediction with special emphasis on the progression of joint space narrowing (JSN). The proposed FS methodology was integrated into an end-to-end machine learning pipeline and a thorough experimental evaluation was conducted using data from the Osteoarthritis Initiative (OAI) database. Several classifiers were investigated for their suitability in the task of JSN prediction and the best performing model was then post-hoc analyzed by using the SHAP method. RESULTS: The results showed that the proposed method presented a better and more stable performance in contrast to other competitive feature selection methods, leading to an average accuracy of 78.14% using XG Boost at 31 selected features. The post-hoc explainability highlighted the important features that contribute to the classification of patients with JSN progression. CONCLUSIONS: The proposed fuzzy feature selection approach improves the performance of the predictive models by selecting a small optimal subset of features compared to popular feature selection methods.


Assuntos
Osteoartrite do Joelho , Algoritmos , Lógica Fuzzy , Humanos , Aprendizado de Máquina , Osteoartrite do Joelho/diagnóstico por imagem
7.
Diagnostics (Basel) ; 11(2)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670414

RESUMO

Osteoarthritis is a joint disease that commonly occurs in the knee (KOA). The continuous increase in medical data regarding KOA has triggered researchers to incorporate artificial intelligence analytics for KOA prognosis or treatment. In this study, two approaches are presented to predict the progression of knee joint space narrowing (JSN) in each knee and in both knees combined. A machine learning approach is proposed with the use of multidisciplinary data from the osteoarthritis initiative database. The proposed methodology employs: (i) A clustering process to identify groups of people with progressing and non-progressing JSN; (ii) a robust feature selection (FS) process consisting of filter, wrapper, and embedded techniques that identifies the most informative risk factors; (iii) a decision making process based on the evaluation and comparison of various classification algorithms towards the selection and development of the final predictive model for JSN; and (iv) post-hoc interpretation of the features' impact on the best performing model. The results showed that bounding the JSN progression of both knees can result to more robust prediction models with a higher accuracy (83.3%) and with fewer risk factors (29) compared to the right knee (77.7%, 88 risk factors) and the left knee (78.3%, 164 risk factors), separately.

8.
Healthcare (Basel) ; 8(4)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33217973

RESUMO

Bone metastasis is among the most frequent in diseases to patients suffering from metastatic cancer, such as breast or prostate cancer. A popular diagnostic method is bone scintigraphy where the whole body of the patient is scanned. However, hot spots that are presented in the scanned image can be misleading, making the accurate and reliable diagnosis of bone metastasis a challenge. Artificial intelligence can play a crucial role as a decision support tool to alleviate the burden of generating manual annotations on images and therefore prevent oversights by medical experts. So far, several state-of-the-art convolutional neural networks (CNN) have been employed to address bone metastasis diagnosis as a binary or multiclass classification problem achieving adequate accuracy (higher than 90%). However, due to their increased complexity (number of layers and free parameters), these networks are severely dependent on the number of available training images that are typically limited within the medical domain. Our study was dedicated to the use of a new deep learning architecture that overcomes the computational burden by using a convolutional neural network with a significantly lower number of floating-point operations (FLOPs) and free parameters. The proposed lightweight look-behind fully convolutional neural network was implemented and compared with several well-known powerful CNNs, such as ResNet50, VGG16, Inception V3, Xception, and MobileNet on an imaging dataset of moderate size (778 images from male subjects with prostate cancer). The results prove the superiority of the proposed methodology over the current state-of-the-art on identifying bone metastasis. The proposed methodology demonstrates a unique potential to revolutionize image-based diagnostics enabling new possibilities for enhanced cancer metastasis monitoring and treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA