Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Plant Dis ; 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37552159

RESUMO

In May 2022, rot symptoms were observed 5 days after storage on fresh avocado fruits cv "Lamb Hass" harvested from a 3.4 ha organic orchard in Chania, Crete exhibiting 30% symptom incidence. Brownish-green sunken lesions and soft rot with dark brown lesions covering up to 50% of the mesocarp on fruits and blackish soft lesions on fruit stem ends were observed. To isolate the pathogens, fruits were surface sterilized using 1% NaOCl for 1 min, placed in 70% ethanol for 30 s and washed twice with sterile distilled water. Then, small pieces were excised from the fruit rot margins and transferred on PDA amended with 0.015% streptomycin-sulfate. Single-spore isolates were incubated on PDA for 10 days and subjected to morphological examination. Two distinct pathogenic fungal isolates were obtained, and their symptoms were re-examined on avocado fruits. The first isolate (A1) obtained from the fruit stem end, initially produced hyaline dense aerial mycelia, being gray and black on the upper and lower surface of the Petri dishes, respectively. The second isolate (A2) obtained from the main body of the fruit, formed round, grayish colonies, with orange conidial aggregates. Based on morphological characteristics (Phillips et al.,2013; Weir et al., 2012), isolates were preliminary identified as Neofusicoccum sp. (A1) and Colletotrichum sp. (A2). Isolates were molecularly identified by sequencing of the ITS-5.8S rRNA, translation elongation factor 1-alpha (tef1) and beta-tubulin (tub2) genes. PCRs were conducted using primer pairs ITS4/ITS5, EF1-728F/EF1986R and Bt2a/Bt2b as well as ITS4/ITS5 and 5'-tef1/3'-tef1 and Bt2a/Bt2b for isolates A1 and A2, respectively (Carbone & Kohn, 1999; Glass & Donaldson, 1995; Rojas et al., 2010; Weir et al., 2012; White et al., 1990). The sequences were deposited into GenBank under the accession numbers OQ852465, OQ867962, OQ867965 for N. luteum and, OQ852466, OQ867963 and OQ867964 for C. gloeosporioides. Based on Multilocus sequence analysis (MLSA), a phylogenetic tree was constructed using concatenated sequences, following Kimura's two parameter model (1980), which confirmed their identity as N luteum and C. gloeosporioides strains. Mature avocado fruits (cv. Hass) were surface sterilized and dried. Consequently, incised fruits were inoculated with mycelial agar plugs (5 mm in diameter) cut from the edge of rapidly growing colonies of N. luteum and C. gloeosporioides strains. Fruits incubated in moist chambers and at 25°C for 5 days in the dark. Fruit bodies and stems were inoculated with the respective isolates and sterile agar plugs in the case of the control. Five fruits were used for each pathogenic trial per fungal isolate, which was repeated twice. After symptom occurrence, these pathogenic isolates were re-isolated successfully and molecularly identified, while exhibiting similar to original symptoms confirming Koch's postulates. While other reports exist on the presence of these pathogens in different countries worldwide, this is the first report of C. gloeosporioides and N. luteum as post-harvest pathogens of avocado, which is an economically important crop of Crete, in Greece (Akgül et al., 2016). This study provides the means for the accurate identification of these fungal pathogens causing avocado fruit rots and taking into consideration the available treatment options can contribute to establishing effective management strategies.

2.
Antibiotics (Basel) ; 12(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36671302

RESUMO

Honey's antibacterial activity has been recently linked to the inhibitory effects of honey microbiota against a range of foodborne and human pathogens. In the current study, the microbial community structure of honey samples exerting pronounced antimicrobial activity was examined. The honey samples were obtained from different geographical locations in Greece and had diverse pollen origin (fir, cotton, fir-oak, and Arbutus unedo honeys). Identification of honey microbiota was performed by high-throughput amplicon sequencing analysis, detecting 335 distinct taxa in the analyzed samples. Regarding ecological indices, the fir and cotton honeys possessed greater diversity than the fir-oak and Arbutus unedo ones. Lactobacillus kunkeei (basionym of Apilactobacillus kun-keei) was the predominant taxon in the fir honey examined. Lactobacillus spp. appeared to be favored in honey from fir-originated pollen and nectar since lactobacilli were more pronounced in fir compared to fir-oak honey. Pseudomonas, Streptococcus, Lysobacter and Meiothermus were the predominant taxa in cotton honey, whereas Lonsdalea, the causing agent of acute oak decline, and Zymobacter, an osmotolerant facultative anaerobic fermenter, were the dominant taxa in fir-oak honey. Moreover, methylotrophic bacteria represented 1.3-3% of the total relative abundance, independently of the geographical and pollen origin, indicating that methylotrophy plays an important role in honeybee ecology and functionality. A total of 14 taxa were identified in all examined honey samples, including bacilli/anoxybacilli, paracocci, lysobacters, pseudomonads, and sphingomonads. It is concluded that microbial constituents of the honey samples examined were native gut microbiota of melliferous bees and microbiota of their flowering plants, including both beneficial bacteria, such as potential probiotic strains, and animal and plant pathogens, e.g., Staphylococcus spp. and Lonsdalea spp. Further experimentation will elucidate aspects of potential application of microbial bioindicators in identifying the authenticity of honey and honeybee-derived products.

3.
Environ Technol ; 44(10): 1518-1529, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34781849

RESUMO

Biotreatment of triclosan is mainly performed in conventional activated sludge systems, which, however, are not capable of completely removing this antibacterial agent. As a consequence, triclosan ends up in surface and groundwater, constituting an environmental threat, due to its toxicity to aquatic life. However, little is known regarding the diversity and mechanism of action of microbiota capable of degrading triclosan. In this work, an immobilized cell bioreactor was setup to treat triclosan-rich wastewater. Bioreactor operation resulted in high triclosan removal efficiency, even greater than 99.5%. Nitrogen assimilation was mainly occurred in immobilized biomass, although nitrification was inhibited. Based on Illumina sequencing, Bradyrhizobiaceae, followed by Ferruginibacter, Thermomonas, Lysobacter and Gordonia, were the dominant genera in the bioreactor, representing 38.40 ± 0.62% of the total reads. However, a broad number of taxa (15 genera), mainly members of Xanthomonadaceae, Bradyrhizobiaceae and Chitinophagaceae, showed relative abundances between 1% and 3%. Liquid Chromatography coupled to Quadrupole Time-Of-Flight Mass Spectrometry (LC-QTOF-MS) resulted in the identification of catabolic routes of triclosan in the immobilized cell bioreactor. Seven intermediates of triclosan were detected, with 2,4-dichlorophenol, 4-chlorocatechol and 2-chlorohydroquinone being the key breakdown products of triclosan. Thus, the immobilized cell bioreactor accommodated a diverse bacterial community capable of degrading triclosan.


Assuntos
Triclosan , Triclosan/química , Águas Residuárias , Células Imobilizadas/química , Esgotos/microbiologia , Reatores Biológicos
4.
Artigo em Inglês | MEDLINE | ID: mdl-35389824

RESUMO

In this study, electrochemical treatment and application of O3/UV/H2O2 in various combinations were evaluated in respect to their efficiency to depurate mature landfill leachate. Based on preliminary experiments, electrochemical treatment using stainless-steel electrodes at 2 cm gap was performed optimally at 50 mA/cm2 and pH 6, while application of O3 at 120 L/h, UV at 991 J/cm2 and H2O2 concentration of 1 g/L was carried out. Electrochemical treatment and O3/UV/H2O2 under optimal conditions were applied as follows: I) electrochemical treatment, followed by O3/UV/H2O2 and solids precipitation, II) electrochemical treatment, followed by precipitation and then by O3/UV/H2O2 treatment, and III) O3/UV/H2O2, followed by electrochemical treatment. A low performance was observed when O3/UV/H2O2 preceding electrochemical treatment. Solids, TKN and total COD (tCON) removal was primarily achieved through electrocoagulation, whereas color and soluble COD (sCOD) reduction was mainly attributed to electrochemical oxidation. Experimental setup I was the most efficient treatment scheme, resulting in tCOD, sCOD, TKN, TSS, SACUV254nm and color number reduction of 73%, 80%, 76%, 79%, 94% and 98%, respectively. Indeed, O3/UV/H2O2 step could be omitted since its effectiveness was restricted during landfill leachate treatment. In conclusion, electrochemical treatment followed by precipitation could result in effective reduction of nutrients and color.


Assuntos
Poluentes Químicos da Água , Peróxido de Hidrogênio/química , Oxirredução , Poluentes Químicos da Água/análise
5.
Microorganisms ; 10(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35208762

RESUMO

An increasing human population necessitates more food production, yet current techniques in agriculture, such as chemical pesticide use, have negative impacts on the ecosystems and strong public opposition. Alternatives to synthetic pesticides should be safe for humans, the environment, and be sustainable. Extremely diverse ecological niches and millions of years of competition have shaped the genomes of algae to produce a myriad of substances that may serve humans in various biotechnological areas. Among the thousands of described algal species, only a small number have been investigated for valuable metabolites, yet these revealed the potential of algal metabolites as bio-pesticides. This review focuses on macroalgae and microalgae (including cyanobacteria) and their extracts or purified compounds, that have proven to be effective antibacterial, antiviral, antifungal, nematocides, insecticides, herbicides, and plant growth stimulants. Moreover, the mechanisms of action of the majority of these metabolites against plant pests are thoroughly discussed. The available information demonstrated herbicidal activities via inhibition of photosynthesis, antimicrobial activities via induction of plant defense responses, inhibition of quorum sensing and blocking virus entry, and insecticidal activities via neurotoxicity. The discovery of antimetabolites also seems to hold great potential as one recent example showed antimicrobial and herbicidal properties. Algae, especially microalgae, represent a vast untapped resource for discovering novel and safe biopesticide compounds.

6.
Environ Pollut ; 301: 119030, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35189300

RESUMO

Imazalil (IMZ) is an imidazole fungicide commonly used by fruit-packaging plants (FPPs) to control fungal infections during storage. Its application leads to the production of pesticide-contaminated wastewaters, which, according to the European Commission, need to be treated on site. Considering the lack of efficient treatment methods, biodepuration systems inoculated with tailored-made inocula specialized on the removal of such persistent fungicides appear as an appropriate solution. However, nothing is known about the biodegradation of IMZ. We aimed to isolate and characterize microorganisms able to degrade the recalcitrant fungicide IMZ and eventually to test their removal efficiency under near practical bioengineering conditions. Enrichment cultures from a soil receiving regular discharges of effluents from a FPP, led to the isolation of a Cladosporium herbarum strain, which showed no pathogenicity on fruits, a trait essential for its biotechnological exploitation in FPPs. The fungus was able to degrade up to 100 mg L-1 of IMZ. However, its degrading capacity and growth was reduced at increasing IMZ concentrations in a dose-dependent manner, suggesting the involvement of a detoxification rather than an energy-gain mechanism in the dissipation of IMZ. The isolate could tolerate and gradually degrade the fungicides fludioxonil (FLD) and thiabendazole (TBZ), also used in FPPs and expected to coincide alongside IMZ in FPP effluents. The capacity of the isolate to remove IMZ in a practical context was evaluated in a benchtop immobilized-cell bioreactor fed with artificial IMZ-contaminated wastewater (200 mg L-1). The fungal strain established in the reactor, completely dominated the fungal community and effectively removed >96% of IMZ. The bioreactor also supported a diverse bacterial community composed of Sphingomonadales, Burkholderiales and Pseudomonadales. Our study reports the isolation of the first IMZ-degrading microorganism with high efficiency to remove IMZ from agro-industrial effluents under bioengineering conditions.


Assuntos
Fungicidas Industriais , Cladosporium , Fungos/metabolismo , Fungicidas Industriais/metabolismo , Imidazóis
7.
Biomolecules ; 12(2)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35204810

RESUMO

Concerning human and environmental health, safe alternatives to synthetic pesticides are urgently needed. Many of the currently used synthetic pesticides are not authorized for application in organic agriculture. In addition, the developed resistances of various pests against classical pesticides necessitate the urgent demand for efficient and safe products with novel modes of action. Botanical pesticides are assumed to be effective against various crop pests, and they are easily biodegradable and available in high quantities and at a reasonable cost. Many of them may act by diverse yet unexplored mechanisms of action. It is therefore surprising that only few plant species have been developed for commercial usage as biopesticides. This article reviews the status of botanical pesticides, especially in Europe and Mediterranean countries, deepening their active principles and mechanisms of action. Moreover, some constraints and challenges in the development of novel biopesticides are highlighted.


Assuntos
Inseticidas , Praguicidas , Agentes de Controle Biológico/farmacologia , Europa (Continente) , Humanos , Inseticidas/farmacologia , Praguicidas/farmacologia , Plantas
8.
Environ Sci Pollut Res Int ; 29(20): 29597-29612, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34542817

RESUMO

Fludioxonil is a post-harvest fungicide contained in effluents produced by fruit packaging plants, which should be treated prior to environmental dispersal. We developed and evaluated an immobilized cell bioreactor, operating under microaerophilic conditions and gradually reduced hydraulic retention times (HRTs) from 10 to 3.9 days, for the biotreatment of fludioxonil-rich wastewater. Fludioxonil removal efficiency was consistently above 96%, even at the shortest HRT applied. A total of 12 transformation products were tentatively identified during fludioxonil degradation by using liquid chromatography coupled to quadrupole time-of-flight Mass spectrometry (LC-QTOF-MS). Fludioxonil degradation pathway was initiated by successive hydroxylation and carbonylation of the pyrrole moiety and disruption of the oxidized cyanopyrrole ring at the NH-C bond. The detection of 2,2-difluoro-2H-1,3-benzodioxole-4-carboxylic acid verified the decyanation and deamination of the molecule, whereas its conversion to the tentatively identified compound 2,3-dihydroxybenzoic acid indicated its defluorination. High-throughput amplicon sequencing revealed that HRT shortening led to reduced α-diversity, significant changes in the ß-diversity, and a shift in the bacterial community composition from an initial activated sludge system typical community to a community composed of bacterial taxa like Clostridium, Oligotropha, Pseudomonas, and Terrimonas capable of performing advanced degradation and/or aerobic denitrification. Overall, the immobilized cell bioreactor operation under microaerophilic conditions, which minimizes the cost for aeration, can provide a sustainable solution for the depuration of fludioxonil-contaminated agro-industrial effluents.


Assuntos
Reatores Biológicos , Águas Residuárias , Células Imobilizadas , Dioxóis , Pirróis
9.
Insects ; 12(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34680692

RESUMO

The Spotted-Wing Drosophila fly, Drosophila suzukii, is an invasive pest species infesting major agricultural soft fruits. Drosophila suzukii management is currently based on insecticide applications that bear major concerns regarding their efficiency, safety and environmental sustainability. The sterile insect technique (SIT) is an efficient and friendly to the environment pest control method that has been suggested for the D. suzukii population control. Successful SIT applications require mass-rearing of the strain to produce competitive and of high biological quality males that will be sterilized and consequently released in the wild. Recent studies have suggested that insect gut symbionts can be used as a protein source for Ceratitis capitata larval diet and replace the expensive brewer's yeast. In this study, we exploited Enterobacter sp. AA26 as partial and full replacement of inactive brewer's yeast in the D. suzukii larval diet and assessed several fitness parameters. Enterobacter sp. AA26 dry biomass proved to be an inadequate nutritional source in the absence of brewer's yeast and resulted in significant decrease in pupal weight, survival under food and water starvation, fecundity, and adult recovery.

10.
Life (Basel) ; 11(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477775

RESUMO

The evaluation of effluent wastewater quality mainly relies on the assessment of conventional bacterial indicators, such as fecal coliforms and enterococci; however, little is known about opportunistic pathogens, which can resist chlorination and may be transmitted in aquatic environments. In contrast to conventional microbiological methods, high-throughput molecular techniques can provide an accurate evaluation of effluent quality, although a limited number of studies have been performed in this direction. In this work, high-throughput amplicon sequencing was employed to assess the effectiveness of chlorination as a disinfection method for secondary effluents. Common inhabitants of the intestinal tract, such as Bacteroides, Arcobacter and Clostridium, and activated sludge denitrifiers capable of forming biofilms, such as Acidovorax, Pseudomonas and Thauera, were identified in the chlorinated effluent. Chloroflexi with dechlorination capability and the bacteria involved in enhanced biological phosphorus removal, i.e., Candidatus Accumulibacter and Candidatus Competibacter, were also found to resist chlorination. No detection of Escherichia indicates the lack of fecal coliform contamination. Mycobacterium spp. were absent in the chlorinated effluent, whereas toxin-producing cyanobacteria of the genera Anabaena and Microcystis were identified in low abundances. Chlorination significantly affected the filamentous bacteria Nocardioides and Gordonia, whereas Zoogloea proliferated in the disinfected effluent. Moreover, perchlorate/chlorate- and organochlorine-reducing bacteria resisted chlorination.

11.
Bioresour Technol ; 325: 124694, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33454565

RESUMO

Although caper processing wastewaters (CPW) are characterized by high organic content and salt concentration, no attempt has been made to treat these effluents. In this study, an immobilized cell bioreactor efficiently treated CPW even at hypersaline conditions (100 g/L salinity). Nitrogen was mainly assimilated during biotreatment, as nitrification was inhibited at elevated salinities. The hydrolytic potential was assessed by determining glucanase, xylanase, glucosidase, lipase and protease activities, which were negatively affected above 20 g/L salinity as the consequence of the inhibition of non-halotolerant microbiota. Succession of non-halotolerant taxa by the slightly halotolerant bacteria Defluviimonas, Amaricoccus, Arenibacter, Formosa and Muricauda, and then by the moderately/extremely halotolerant genera Halomonas, Roseovarius and Idiomarina occurred over salinity increase. Diversity indices were reduced during transition from moderately saline to hypersaline conditions. A distinct network was formed at hypersaline conditions, consisting of the halotolerant genera Halomonas, Idiomarina, Saliterribacillus and Gracilibacillus.


Assuntos
Capparis , Águas Residuárias , Bactérias , Reatores Biológicos , Células Imobilizadas , Salinidade , Taiwan
12.
Environ Sci Pollut Res Int ; 28(26): 33837-33843, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32820447

RESUMO

Online sensors, which monitor the ammonia oxidation and the dissimilatory nitrate reduction process, can optimize aerobic and anoxic phase duration. The purpose of this study was to comparatively evaluate the effectiveness of online sensors that were in situ-located in an intermittently aerated and fed membrane bioreactor (IAF-MBR) system. Ammonium and nitrate nitrogen sensors equipped with ion-selective electrodes as well as pH and oxidation-reduction potential (ORP) sensors were employed to online monitoring and optimizing of ammonia oxidation and nitrate reduction processes. The "ammonia valley" or pH bending point, which is indicative of ammonia depletion, was effectively and repeatedly detected by measuring the pH profile, while the "nitrate knee" point, which indicates the completion of the denitrification process, was online-detected by obtaining the ORP profile. The "ammonia valley" and "nitrate knee" were detected at pH and ORP values of 6.47 ± 0.02 and - 162 ± 39 mV, respectively. The ORP and pH first derivatives (dORP/dt and dpH/dt) were found to be more suitable than the untransformed ORP and pH values in detecting pH and ORP inflection points and controlling the shift from the anoxic to the aeration phase. Specifically, the ORP and pH bending points were detected at dORP/dt and dpH/dt values of 1.64 ± 0.82 mV min-1 and 0.005 ± 0.001 min-1, respectively. Moreover, the ORP first derivative has appeared earlier than the ORP bending point.


Assuntos
Amônia , Reatores Biológicos , Concentração de Íons de Hidrogênio , Nitratos , Nitrogênio , Oxirredução
13.
Environ Sci Pollut Res Int ; 28(4): 3774-3786, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32418094

RESUMO

The large quantities and the persistent nature of fungicide wastewaters have increased the efforts towards a sustainable technological solution. In this context, fludioxonil-contaminated wastewater was treated in an upflow immobilized cell bioreactor, resulting in chemical oxygen demand (COD) removal efficiency even higher than 80%, whereas the electrical conductivity (EC) of the effluent was gradually increased. Organic-F was mineralized by 94.0 ± 5.2%, which was in accordance with the high fludioxonil removal efficiency (95.4 ± 4.0%). In addition, effluent total Kjeldahl nitrogen (TKN) concentration reduced significantly during bioprocessing. A strong relationship among COD removal, TKN/total nitrogen removal, and effluent EC increase (p < 0.01) was identified. Despite the adequate aeration provided, effluent nitrite and nitrate concentrations were negligible. Illumina sequencing revealed a reduction in the relative abundances of Betaproteobacteria, Chloroflexi, Planctomycetes, and Firmicutes and an increase in the proportion of Alphaproteobacteria and Actinobacteria. A shift in bacterial communities occurred during fludioxonil treatment, resulting in the significant increase of the relative abundances of Empedobacter, Sphingopyxis, and Rhodopseudomonas (from 0.67 ± 0.13% at the start-up to 34.34 ± 1.60% at the end of biotreatment). In conclusion, the immobilized cell bioreactor permitted the proliferation of specialized activated sludge microbiota with an active role in the depuration of postharvest fungicides.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Reatores Biológicos , Células Imobilizadas , Dioxóis , Nitrogênio , Pirróis , Esgotos
14.
BMC Microbiol ; 19(Suppl 1): 288, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31870292

RESUMO

BACKGROUND: Insect species have established sophisticated symbiotic associations with diverse groups of microorganisms including bacteria which have been shown to affect several aspects of their biology, physiology, ecology and evolution. In addition, recent studies have shown that insect symbionts, including those localized in the gastrointestinal tract, can be exploited for the enhancement of sterile insect technique (SIT) applications against major insect pests such as the Mediterranean fruit fly (medfly) Ceratitis capitata. We previously showed that Enterobacter sp. AA26 can be used as probiotic supplement in medfly larval diet improving the productivity and accelerating the development of the VIENNA 8 genetic sexing strain (GSS), which is currently used in large scale operational SIT programs worldwide. RESULTS: Enterobacter sp. AA26 was an adequate nutritional source for C. capitata larvae, comprising an effective substitute for brewer's yeast. Incorporating inactive bacterial cells in the larval diet conferred a number of substantial beneficial effects on medfly biology. The consumption of bacteria-based diet (either as full or partial yeast replacement) resulted in decreased immature stages mortality, accelerated immature development, increased pupal weight, and elongated the survival under stress conditions. Moreover, neither the partial nor the complete replacement of yeast with Enterobacter sp. AA26 had significant impact on adult sex ratio, females' fecundity, adults' flight ability and males' mating competitiveness. The absence of both yeast and Enterobacter sp. AA26 (deprivation of protein source and possible other important nutrients) from the larval diet detrimentally affected the larval development, survival and elongated the immature developmental duration. CONCLUSIONS: Enterobacter sp. AA26 dry biomass can fully replace the brewer's yeast as a protein source in medfly larval diet without any effect on the productivity and the biological quality of reared medfly of VIENNA 8 GSS as assessed by the FAO/IAEA/USDA standard quality control tests. We discuss this finding in the context of mass-rearing and SIT applications.


Assuntos
Ceratitis capitata/fisiologia , Enterobacter/fisiologia , Controle Biológico de Vetores/métodos , Ração Animal , Animais , Biomassa , Ceratitis capitata/microbiologia , Feminino , Masculino , Probióticos/administração & dosagem , Comportamento Sexual Animal , Simbiose
15.
BMC Biotechnol ; 19(Suppl 2): 90, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31847833

RESUMO

BACKGROUND: Enterobacter sp. AA26 was recently isolated from the midgut of Ceratitis capitata (Wiedemann) and it was shown to have positive effects in rearing efficiency when used as larval probiotics. In this study, biomass production was carried out in bench-scale bioreactors to elucidate the biokinetic properties of Enterobacter sp. AA26 and its nutritional value. RESULTS: Strain AA26 is a psychrotolerant, halotolerant, facultatively anaerobic bacterium with broad pH range for growth (pH 4 to 10.2), which possessed the typical biochemical profile of Enterobacter spp. The specific oxygen uptake rate (SOUR) was calculated as 63.2 ± 1.26 and 121 ± 1.73 mg O2 g- 1 VSS h- 1, with the yield coefficients in acetate and glucose being equal to 0.62 ± 0.03 and 0.67 ± 0.003 g biomass produced/g substrate consumed, respectively. The maximum specific growth rate (µmax) of strain AA26 grown in fill-and-draw bioreactors at 20 °C and 35 °C was 0.035 and 0.069 h- 1, respectively. Strain AA26 grew effectively in agro-industrial wastewaters, i.e. cheese whey wastewater (CWW), as alternative substrate for replacing yeast-based media. Biomass of strain AA26 could provide all the essential amino acids and vitamins for the artificial rearing of C. capitata. Greater intracellular α- and ß-glucosidase activities were observed during growth of strain AA26 in CWW than in yeast-based substrate, although the opposite pattern was observed for the respective extracellular activities (p < 0.01). Low protease activity was exhibited in cells grown in yeast-based medium, while no lipase activities were detected. CONCLUSIONS: The ability of strain AA26 to grow in agro-industrial wastes and to provide all the essential nutrients can minimize the cost of commercial media used for mass rearing and large scale sterile insect technique applications.


Assuntos
Aminoácidos Essenciais/metabolismo , Reatores Biológicos/microbiologia , Ceratitis capitata/microbiologia , Enterobacter/crescimento & desenvolvimento , Vitaminas/metabolismo , Acetatos/metabolismo , Animais , Técnicas de Cultura Celular por Lotes , Biomassa , Ceratitis capitata/fisiologia , Enterobacter/metabolismo , Enterobacter/fisiologia , Glucose/metabolismo , Resíduos Industriais , Probióticos/administração & dosagem , Águas Residuárias/microbiologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-31264914

RESUMO

The main objective of wastewater treatment is to remove carbon and other nutrients from municipal and industrial effluents in order to protect the environment and human health. Typical wastewater treatment is usually achieved by a combination of physical, chemical and biological methods. In this work, municipal wastewater was depurated using chemically enhanced primary treatment (CEPT) in combination with a pilot-scale trickling filter. Lab scale experiments (Jar-tests) were carried out in order to determine the optimum dosage of chemicals. Selection criteria were the organic load removal efficiency and the low operational cost. Coagulation-flocculation process was conducted through polyaluminium chloride (PAC) and the cationic polyelectrolyte (Zetag 8180) addition. By combining CEPT and trickling filter, tCOD (total Chemical Oxygen Demand), sCOD (soluble Chemical Oxygen Demand), BOD5 (5-day Biochemical Oxygen Demand), NH4+-N, TSS (Total Suspended Solids), VSS (Volatile Suspended Solids) and PO43--P removal efficiencies were estimated to be 89, 82, 93, 60, 96, 96 and 78%, respectively. It is concluded that biological filtration contributed significantly in nutrients removal processes. Moreover, the obtained effluent was low in carbon and rich in nitrogen, which can be applied for restricted irrigation after disinfection, complying with the discharge limits set in the Greek Joint Ministerial Decree 145116/2011.


Assuntos
Purificação da Água/economia , Purificação da Água/métodos , Análise da Demanda Biológica de Oxigênio , Carbono/análise , Carbono/isolamento & purificação , Custos e Análise de Custo , Filtração , Floculação , Grécia , Nutrientes/análise , Nutrientes/isolamento & purificação , Águas Residuárias/química
17.
Environ Sci Pollut Res Int ; 26(14): 14238-14249, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30859445

RESUMO

An enrichment process was employed by applying high ibuprofen concentration in an immobilized cell bioreactor in order to favor the ibuprofen-degrading community present in activated sludge. Experimental data showed the ability of the immobilized cell bioreactor to achieve high ibuprofen removal efficiencies (98.4 ± 0.3%), the tendency of the enriched biomass to acidify the treated liquor, and the inhibition of the nitrification process. Illumina sequencing revealed a massive increase in the relative abundance of Alphaproteobacteria and Gammaproteobacteria (from 29.1 to 80.8%) and a dramatic decrease in the proportion of Bacteroidetes, Planctomycetes, and Verrucomicrobia (from 42.7 to 2.1%) when pure ibuprofen served as the sole carbonaceous feeding substrate. This shift in the feeding conditions resulted in the predominance of Novosphingobium and Rhodanobacter (25.5 ± 10.8% and 25.2 ± 3.0%, respectively) and demonstrated a specialized ibuprofen-degrading bacterial community in activated sludge, which possessed the selective advantage to cope with its degradation. To the best of our knowledge, this bioreactor system was capable of effectively treating the highest ibuprofen concentration applied in wastewater treatment plants.


Assuntos
Biodegradação Ambiental , Reatores Biológicos/microbiologia , Ibuprofeno/metabolismo , Poluentes Químicos da Água/metabolismo , Alphaproteobacteria , Bactérias/classificação , Bactérias/metabolismo , Biomassa , Células Imobilizadas , Microbiota/fisiologia , Nitrificação , Esgotos/microbiologia , Águas Residuárias
18.
Artigo em Inglês | MEDLINE | ID: mdl-29596027

RESUMO

Despite the fact that biological nitrogen removal (BNR) process has been studied in detail in laboratory- and pilot-scale sequencing batch reactor (SBR) systems treating landfill leachate, a limited number of research works have been performed in full-scale SBR plants regarding nitrification and denitrification. In the current study, a full-scale twin SBR system in series of 700 m3 (350 m3 each) treating medium-age landfill leachate was evaluated in terms of its carbon and nitrogen removal efficiency in the absence and presence of external carbon source, i.e., glycerol from biodiesel production. Both biodegradable organic carbon and ammonia were highly oxidized [biochemical oxygen demand (BOD5) and total Kjehldahl nitrogen (TKN) removal efficiencies above 90%], whereas chemical oxygen demand (COD) removal efficiency was slightly above 40%, which is within the range reported in the literature for pilot-scale SBRs. As the consequence of the high recalcitrant organic fraction of the landfill leachate, dissimilatory nitrate reduction was restricted in the absence of crude glycerol, although denitrification was improved by electron donor addition, resulting in TN removal efficiencies above 70%. Experimental data revealed that the second SBR negligibly contributed to BNR process, since carbon and ammonia oxidation completion was achieved in the first SBR. On the other hand, the low VSS/SS ratio, due to the lack of primary sedimentation, highly improved sludge settleability, resulting in sludge volume indices (SVI) below 30 mL g-1.


Assuntos
Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Desnitrificação , Nitrogênio/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Amônia/química , Técnicas de Cultura Celular por Lotes/instrumentação , Técnicas de Cultura Celular por Lotes/métodos , Técnicas de Cultura Celular por Lotes/normas , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos/normas , Calibragem , Carbono/química , Humanos , Nitrificação , Nitrogênio/química , Nitrogênio/farmacocinética , Esgotos/química , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/farmacocinética
19.
Water Sci Technol ; 76(7-8): 1796-1804, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28991794

RESUMO

The aim of this study was to assess the efficacy and effluent quality of a pilot-scale intermittently aerated and fed, externally submerged membrane bioreactor (MBRes) treating municipal wastewater. The effluent quality of the MBRes was evaluated regarding system ability to comply with the Greek legislative limits for restricted and unrestricted wastewater reuse. The average permeate flux was 13.9 L m-2 h-1, while the transmembrane pressure remained above the level of -110 mbar. Experimental data showed that biochemical oxygen demand, chemical oxygen demand, total nitrogen, PO43-- P and total suspended solids removal efficiencies were 97.8, 93.1, 89.6, 93.2 and 100%, respectively, whereas turbidity was reduced by 94.1%. Total coliforms and Escherichia coli were fully eliminated by ultrafiltration and disinfection methods, such as chlorination and ultraviolet radiation. In agreement with the Greek legislation (Joint Ministerial Decree 145116/11) and the guidelines recommended for the Mediterranean countries, the disinfected effluent of the MBRes system can be safely reused directly for urban purposes.


Assuntos
Reatores Biológicos , Membranas Artificiais , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Microbiologia da Água/normas , Análise da Demanda Biológica de Oxigênio , Desinfecção/métodos , Grécia , Nitrogênio , Ultrafiltração , Raios Ultravioleta , Eliminação de Resíduos Líquidos/legislação & jurisprudência , Poluentes da Água
20.
Bioresour Technol ; 238: 48-56, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28432949

RESUMO

A membrane bioreactor (MBR), accomplishing high nitrogen removal efficiencies, was evaluated under various landfill leachate concentrations (50, 75 and 100% v/v). Proteinous and carbohydrate extracellular polymeric substances (EPS) and soluble microbial product (SMP) were strongly correlated (p<0.01) with organic load, salinity and NH4+-N. Exceptionally high ß-glucosidase activities (6700-10,100Ug-1) were determined during MBR operation with 50% v/v leachate, as a result of the low organic carbon availability that extendedly induced ß-glucosidases to breakdown the least biodegradable organic fraction. Illumina sequencing revealed that candidate Saccharibacteria were dominant, independently of the leachate concentration applied, whereas other microbiota (21.2% of total reads) disappeared when undiluted leachate was used. Fungal taxa shifted from a Saccharomyces- to a newly-described Cryptomycota-based community with increasing leachate concentration. Indeed, this is the first report on the dominance of candidate Saccharibacteria and on the examination of their metabolic behavior in a bioreactor treating real wastewater.


Assuntos
Reatores Biológicos , Poluentes Químicos da Água , beta-Glucosidase , Membranas Artificiais , Polímeros , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...