Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713514

RESUMO

Pancreatic ß-cell dysfunction is a key feature of type 2 diabetes, and novel regulators of insulin secretion are desirable. Here we report that the succinate receptor (SUCNR1) is expressed in ß-cells and is up-regulated in hyperglycemic states in mice and humans. We found that succinate acts as a hormone-like metabolite and stimulates insulin secretion via a SUCNR1-Gq-PKC-dependent mechanism in human ß-cells. Mice with ß-cell-specific Sucnr1 deficiency exhibit impaired glucose tolerance and insulin secretion on a high-fat diet, indicating that SUCNR1 is essential for preserving insulin secretion in diet-induced insulin resistance. Patients with impaired glucose tolerance show an enhanced nutritional-related succinate response, which correlates with the potentiation of insulin secretion during intravenous glucose administration. These data demonstrate that the succinate/SUCNR1 axis is activated by high glucose and identify a GPCR-mediated amplifying pathway for insulin secretion relevant to the hyperinsulinemia of prediabetic states.

2.
STAR Protoc ; 4(4): 102693, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37924518

RESUMO

White adipose tissue (WAT) explants culture allows the study of this tissue ex vivo, maintaining its structure and properties. Concurrently, isolating mature adipocytes facilitates research into fat cell metabolism and hormonal regulation. Here, we present a protocol for obtaining, isolating, and processing mature adipocytes, alongside the cultivation of WAT explants from humans and mice. We describe steps for WAT retrieval, culturing of WAT explants, WAT digestion, and adipocytes separation. We then detail procedures for culturing isolated mature adipocytes. For complete details on the use and execution of this protocol, please refer to Villanueva-Carmona et al. (2023).1.


Assuntos
Adipócitos , Tecido Adiposo Branco , Humanos , Camundongos , Animais
3.
Metabolism ; 145: 155630, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37315889

RESUMO

OBJECTIVE: Succinate and succinate receptor 1 (SUCNR1) are linked to fibrotic remodeling in models of non-alcoholic fatty liver disease (NAFLD), but whether they have roles beyond the activation of hepatic stellate cells remains unexplored. We investigated the succinate/SUCNR1 axis in the context of NAFLD specifically in hepatocytes. METHODS: We studied the phenotype of wild-type and Sucnr1-/- mice fed a choline-deficient high-fat diet to induce non-alcoholic steatohepatitis (NASH), and explored the function of SUCNR1 in murine primary hepatocytes and human HepG2 cells treated with palmitic acid. Lastly, plasma succinate and hepatic SUCNR1 expression were analyzed in four independent cohorts of patients in different NAFLD stages. RESULTS: Sucnr1 was upregulated in murine liver and primary hepatocytes in response to diet-induced NASH. Sucnr1 deficiency provoked both beneficial (reduced fibrosis and endoplasmic reticulum stress) and detrimental (exacerbated steatosis and inflammation and reduced glycogen content) effects in the liver, and disrupted glucose homeostasis. Studies in vitro revealed that hepatocyte injury increased Sucnr1 expression, which when activated improved lipid and glycogen homeostasis in damaged hepatocytes. In humans, SUCNR1 expression was a good determinant of NAFLD progression to advanced stages. In a population at risk of NAFLD, circulating succinate was elevated in patients with a fatty liver index (FLI) ≥60. Indeed, succinate had good predictive value for steatosis diagnosed by FLI, and improved the prediction of moderate/severe steatosis through biopsy when added to an FLI algorithm. CONCLUSIONS: We identify hepatocytes as target cells of extracellular succinate during NAFLD progression and uncover a hitherto unknown function for SUCNR1 as a regulator of hepatocyte glucose and lipid metabolism. Our clinical data highlight the potential of succinate and hepatic SUCNR1 expression as markers to diagnose fatty liver and NASH, respectively.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Fibrose , Glucose/metabolismo , Glicogênio/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Succinatos/metabolismo , Succinatos/farmacologia
4.
Cell Metab ; 35(4): 601-619.e10, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36977414

RESUMO

Adipose tissue modulates energy homeostasis by secreting leptin, but little is known about the factors governing leptin production. We show that succinate, long perceived as a mediator of immune response and lipolysis, controls leptin expression via its receptor SUCNR1. Adipocyte-specific deletion of Sucnr1 influences metabolic health according to nutritional status. Adipocyte Sucnr1 deficiency impairs leptin response to feeding, whereas oral succinate mimics nutrient-related leptin dynamics via SUCNR1. SUCNR1 activation controls leptin expression via the circadian clock in an AMPK/JNK-C/EBPα-dependent manner. Although the anti-lipolytic role of SUCNR1 prevails in obesity, its function as a regulator of leptin signaling contributes to the metabolically favorable phenotype in adipocyte-specific Sucnr1 knockout mice under standard dietary conditions. Obesity-associated hyperleptinemia in humans is linked to SUCNR1 overexpression in adipocytes, which emerges as the major predictor of adipose tissue leptin expression. Our study establishes the succinate/SUCNR1 axis as a metabolite-sensing pathway mediating nutrient-related leptin dynamics to control whole-body homeostasis.


Assuntos
Relógios Circadianos , Leptina , Animais , Humanos , Camundongos , Adipócitos/metabolismo , Metabolismo Energético/fisiologia , Leptina/metabolismo , Camundongos Knockout , Obesidade/metabolismo , Succinatos/metabolismo
5.
Microbiome ; 10(1): 135, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36002880

RESUMO

BACKGROUND: Succinate is produced by both human cells and by gut bacteria and couples metabolism to inflammation as an extracellular signaling transducer. Circulating succinate is elevated in patients with obesity and type 2 diabetes and is linked to numerous complications, yet no studies have specifically addressed the contribution of gut microbiota to systemic succinate or explored the consequences of reducing intestinal succinate levels in this setting. RESULTS: Using germ-free and microbiota-depleted mouse models, we show that the gut microbiota is a significant source of circulating succinate, which is elevated in obesity. We also show in vivo that therapeutic treatments with selected bacteria diminish the levels of circulating succinate in obese mice. Specifically, we demonstrate that Odoribacter laneus is a promising probiotic based on its ability to deplete succinate and improve glucose tolerance and the inflammatory profile in two independent models of obesity (db/db mice and diet-induced obese mice). Mechanistically, this is partly mediated by the succinate receptor 1. Supporting these preclinical findings, we demonstrate an inverse correlation between plasma and fecal levels of succinate in a cohort of patients with severe obesity. We also show that plasma succinate, which is associated with several components of metabolic syndrome including waist circumference, triglycerides, and uric acid, among others, is a primary determinant of insulin sensitivity evaluated by the euglycemic-hyperinsulinemic clamp. CONCLUSIONS: Overall, our work uncovers O. laneus as a promising next-generation probiotic to deplete succinate and improve glucose tolerance and obesity-related inflammation. Video Abstract.


Assuntos
Glicemia , Diabetes Mellitus Tipo 2 , Animais , Bacteroidetes , Diabetes Mellitus Tipo 2/microbiologia , Dieta Hiperlipídica , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/etiologia , Ácido Succínico
6.
Aging Cell ; 21(8): e13667, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35811457

RESUMO

Dysfunctional adipocyte precursors have emerged as key determinants for obesity- and aging-related inflammation, but the mechanistic basis remains poorly understood. Here, we explored the dysfunctional adipose tissue of elderly and obese individuals focusing on the metabolic and inflammatory state of human adipose-derived mesenchymal stromal cells (hASCs), and on sirtuins, which link metabolism and inflammation. Both obesity and aging impaired the differentiation potential of hASCs but had a different impact on their proliferative capacity. hASCs from elderly individuals (≥65 years) showed an upregulation of glycolysis-related genes, which was accompanied by increased lactate secretion and glycogen storage, a phenotype that was exaggerated by obesity. Multiplex protein profiling revealed that the metabolic switch to glycogenesis was associated with a pro-inflammatory secretome concomitant with a decrease in the protein expression of SIRT1 and SIRT6. siRNA-mediated knockdown of SIRT1 and SIRT6 in hASCs from lean adults increased the expression of pro-inflammatory and glycolysis-related markers, and enforced glycogen deposition by overexpression of protein targeting to glycogen (PTG) led to a downregulation of SIRT1/6 protein levels, mimicking the inflammatory state of hASCs from elderly subjects. Overall, our data point to a glycogen-SIRT1/6 signaling axis as a driver of age-related inflammation in adipocyte precursors.


Assuntos
Sirtuína 1 , Sirtuínas , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Adulto , Idoso , Glicogênio/metabolismo , Humanos , Inflamação/metabolismo , Obesidade/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo
8.
Cardiovasc Diabetol ; 20(1): 151, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315463

RESUMO

BACKGROUND: Succinate is produced by both host and microbiota, with a key role in the interplay of immunity and metabolism and an emerging role as a biomarker for inflammatory and metabolic disorders in middle-aged adults. The relationship between plasma succinate levels and cardiovascular disease (CVD) risk in young adults is unknown. METHODS: Cross-sectional study in 100 (65% women) individuals aged 18-25 years from the ACTIvating Brown Adipose Tissue through Exercise (ACTIBATE) study cohort. CVD risk factors, body composition, dietary intake, basal metabolic rate, and cardiorespiratory fitness were assessed by routine methods. Plasma succinate was measured with an enzyme-based assay. Brown adipose tissue (BAT) was evaluated by positron emission tomography, and circulating oxylipins were assessed by targeted metabolomics. Fecal microbiota composition was analyzed in a sub-sample. RESULTS: Individuals with higher succinate levels had higher levels of visceral adipose tissue (VAT) mass (+ 42.5%), triglycerides (+ 63.9%), C-reactive protein (+ 124.2%), diastolic blood pressure (+ 5.5%), and pro-inflammatory omega-6 oxylipins than individuals with lower succinate levels. Succinate levels were also higher in metabolically unhealthy individuals than in healthy overweight/obese peers. Succinate levels were not associated with BAT volume or activity or with fecal microbiota composition and diversity. CONCLUSIONS: Plasma succinate levels are linked to a specific pro-inflammatory omega-6 signature pattern and higher VAT levels, and seem to reflect the cardiovascular status of young adults.


Assuntos
Doenças Cardiovasculares/sangue , Ácido Succínico/sangue , Adiposidade , Adolescente , Adulto , Fatores Etários , Biomarcadores/sangue , Pressão Sanguínea , Proteína C-Reativa/análise , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/fisiopatologia , Estudos Transversais , Feminino , Microbioma Gastrointestinal , Fatores de Risco de Doenças Cardíacas , Humanos , Mediadores da Inflamação/sangue , Gordura Intra-Abdominal/fisiopatologia , Masculino , Oxilipinas/sangue , Ensaios Clínicos Controlados Aleatórios como Assunto , Medição de Risco , Triglicerídeos/sangue , Regulação para Cima , Adulto Jovem
9.
Sci Rep ; 11(1): 13923, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230537

RESUMO

Adipose-derived mesenchymal stem cells (ASCs) are a promising option for the treatment of obesity and its metabolic co-morbidities. Despite the recent identification of brown adipose tissue (BAT) as a potential target in the management of obesity, the use of ASCs isolated from BAT as a therapy for patients with obesity has not yet been explored. Metabolic activation of BAT has been shown to have not only thermogenic effects, but it also triggers the secretion of factors that confer protection against obesity. Herein, we isolated and characterized ASCs from the visceral adipose tissue surrounding a pheochromocytoma (IB-hASCs), a model of inducible BAT in humans. We then compared the anti-obesity properties of IB-hASCs and human ASCs isolated from visceral white adipose tissue (W-hASCs) in a murine model of diet-induced obesity. We found that both ASC therapies mitigated the metabolic abnormalities of obesity to a similar extent, including reducing weight gain and improving glucose tolerance. However, infusion of IB-hASCs was superior to W-hASCs in suppressing lipogenic and inflammatory markers, as well as preserving insulin secretion. Our findings provide evidence for the metabolic benefits of visceral ASC infusion and support further studies on IB-hASCs as a therapeutic option for obesity-related comorbidities.


Assuntos
Tecido Adiposo Branco/patologia , Dieta , Obesidade/patologia , Células-Tronco/patologia , Neoplasias das Glândulas Suprarrenais/patologia , Animais , Biomarcadores/metabolismo , Feminino , Regulação da Expressão Gênica , Glucose/metabolismo , Humanos , Inflamação/genética , Metabolismo dos Lipídeos/genética , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Feocromocitoma/patologia , Aumento de Peso
10.
Br J Pharmacol ; 178(10): 2131-2145, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32986861

RESUMO

BACKGROUND AND PURPOSE: Glucagon-like peptide-2 (GLP-2) is a gastrointestinal hormone released in response to nutritional intake that exerts a wide range of effects by activating GLP-2 receptors. In addition to its intestinotrophic effects, GLP-2 also positively influences glucose metabolism under conditions of obesity, but the mechanisms behind this remain unclear. Here, we have investigated the molecular role of the GLP-2/GLP-2 receptor axis in energetic metabolism, focusing on its potential modulatory effects on adipose tissue. EXPERIMENTAL APPROACH: Physiological measurements (body weight, food intake, locomotor activity, and energy expenditure) and metabolic studies (glucose and insulin tolerance tests) were performed on lean and obese mice treated with the protease-resistant GLP-2 analogue teduglutide. KEY RESULTS: Acute but not chronic centrally administered teduglutide decreased food intake and weight-gain. By contrast, chronic activation of peripheral GLP-2 receptors increased body weight-independent glucose tolerance and had anti-inflammatory effects on visceral adipose tissue. Using a gene silencing approach, we found that adipose tissue is necessary for these beneficial effects of teduglutide. Finally, teduglutide regulates the inflammatory state and acts as an anabolic signal in human adipocytes. CONCLUSION AND IMPLICATIONS: Overall, our data identify adipose tissue as a new, clinically relevant, site of action for GLP-2 activity in obesity. LINKED ARTICLES: This article is part of a themed issue on Cellular metabolism and diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.10/issuetoc.


Assuntos
Tecido Adiposo , Peptídeo 2 Semelhante ao Glucagon , Peso Corporal , Ingestão de Alimentos , Humanos , Obesidade/tratamento farmacológico
11.
J Clin Med ; 9(8)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751800

RESUMO

Crohn's disease (CD) is characterized by compromised immune tolerance to the intestinal commensal microbiota, intestinal barrier inflammation, and hyperplasia of creeping fat (CF) and mesenteric adipose tissue (AT), which seems to be directly related to disease activity. Gut microbiota dysbiosis might be a determining factor in CD etiology, manifesting as a low microbial diversity and a high abundance of potentially pathogenic bacteria. We tested the hypothesis that CF is a reservoir of bacteria through 16S-rRNA sequencing of several AT depots of patients with active and inactive disease and controls. We found a microbiome signature within CF and mesenteric AT from patients, but not in subcutaneous fat. We failed to detect bacterial DNA in any fat depot of controls. Proteobacteria was the most abundant phylum in both CF and mesenteric AT, and positively correlated with fecal calprotectin/C-reactive protein. Notably, the clinical status of patients seemed to be related to the microbiome signature, as those with the inactive disease showed a reduction in the abundance of pathogenic bacteria. Predictive functional profiling revealed many metabolic pathways including lipopolysaccharide biosynthesis and sulfur metabolism overrepresented in active CD relative to that in inactive CD. Our findings demonstrate that microbiota dysbiosis associated with CD pathophysiology is reflected in AT and might contribute to disease severity.

12.
Clin Epigenetics ; 12(1): 53, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32252817

RESUMO

BACKGROUND: Crohn's disease (CD) is characterized by persistent inflammation and ulceration of the small or large bowel, and expansion of mesenteric adipose tissue, termed creeping fat (CF). We previously demonstrated that human adipose-derived stem cells (hASCs) from CF of patients with CD exhibit dysfunctional phenotypes, including a pro-inflammatory profile, high phagocytic capacity, and weak immunosuppressive properties. Importantly, these phenotypes persist in patients in remission and are found in all adipose depots explored including subcutaneous fat. We hypothesized that changes in hASCs are a consequence of epigenetic modifications. METHODS: We applied epigenome-wide profiling with a methylation array (Illumina EPIC/850k array) and gene expression analysis to explore the impact of CD on the methylation signature of hASCs isolated from the subcutaneous fat of patients with CD and healthy controls (n = 7 and 5, respectively; cohort I). Differentially methylated positions (p value cutoff < 1 × 10-4 and ten or more DMPs per gene) and regions (inclusion threshold 0.2, p value cutoff < 1 × 10-2 and more than 2 DMRs per gene) were identified using dmpfinder and Bumphunter (minfi), respectively. Changes in the expression of differentially methylated genes in hASCs were validated in a second cohort (n = 10/10 inactive and active CD and 10 controls; including patients from cohort I) and also in peripheral blood mononuclear cells (PBMCs) of patients with active/inactive CD and of healthy controls (cohort III; n = 30 independent subjects). RESULTS: We found a distinct DNA methylation landscape in hASCs from patients with CD, leading to changes in the expression of differentially methylated genes involved in immune response, metabolic, cell differentiation, and development processes. Notably, the expression of several of these genes in hASCs and PBMCs such as tumor necrosis factor alpha (TNFA) and PR domain zinc finger protein 16 (PRDM16) were not restored to normal (healthy) levels after disease remission. CONCLUSIONS: hASCs of patients with CD exhibit a unique DNA methylation and gene expression profile, but the expression of several genes are only partially restored in patients with inactive CD, both in hASCs and PBMCs. Understanding how CD shapes the functionality of hASCs is critical for investigating the complex pathophysiology of this disease, as well as for the success of cell-based therapies. Human adipose-stem cells isolated from subcutaneous fat of patients with Crohn's disease exhibit an altered DNA methylation pattern and gene expression profile compared with those isolated from healthy individuals, with immune system, cell differentiation, metabolic and development processes identified as the main pathways affected. Interestingly, the gene expression of several genes involved in these pathways is only partially restored to control levels in patients with inactive Crohn's disease, both in human adipose-stem cells and peripheral blood mononuclear cells. Understanding how Crohn's disease shapes the functionality of human adipose-stem cells is critical for investigating the complex pathophysiology of this disease, as well as for the success of cell-based therapies.


Assuntos
Tecido Adiposo/química , Doença de Crohn/genética , Metilação de DNA , Epigenômica/métodos , Redes Reguladoras de Genes , Estudos de Casos e Controles , Técnicas de Cultura de Células , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Células-Tronco/química
13.
Nat Immunol ; 20(5): 581-592, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30962591

RESUMO

Succinate is a signaling metabolite sensed extracellularly by succinate receptor 1 (SUNCR1). The accumulation of succinate in macrophages is known to activate a pro-inflammatory program; however, the contribution of SUCNR1 to macrophage phenotype and function has remained unclear. Here we found that activation of SUCNR1 had a critical role in the anti-inflammatory responses in macrophages. Myeloid-specific deficiency in SUCNR1 promoted a local pro-inflammatory phenotype, disrupted glucose homeostasis in mice fed a normal chow diet, exacerbated the metabolic consequences of diet-induced obesity and impaired adipose-tissue browning in response to cold exposure. Activation of SUCNR1 promoted an anti-inflammatory phenotype in macrophages and boosted the response of these cells to type 2 cytokines, including interleukin-4. Succinate decreased the expression of inflammatory markers in adipose tissue from lean human subjects but not that from obese subjects, who had lower expression of SUCNR1 in adipose-tissue-resident macrophages. Our findings highlight the importance of succinate-SUCNR1 signaling in determining macrophage polarization and assign a role to succinate in limiting inflammation.


Assuntos
Inflamação/imunologia , Macrófagos/imunologia , Obesidade/imunologia , Receptores Acoplados a Proteínas G/imunologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Animais , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Inflamação/genética , Inflamação/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Obesidade/genética , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Ácido Succínico/imunologia , Ácido Succínico/metabolismo , Ácido Succínico/farmacologia , Células THP-1
14.
Int J Obes (Lond) ; 43(6): 1256-1268, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30262812

RESUMO

BACKGROUND: A functional population of adipocyte precursors, termed adipose-derived stromal/stem cells (ASCs), is crucial for proper adipose tissue (AT) expansion, lipid handling, and prevention of lipotoxicity in response to chronic positive energy balance. We previously showed that obese human subjects contain a dysfunctional pool of ASCs. Elucidation of the mechanisms underlying abnormal ASC function might lead to therapeutic interventions for prevention of lipotoxicity by improving the adipogenic capacity of ASCs. METHODS: Using epigenome-wide association studies, we explored the impact of obesity on the methylation signature of human ASCs and their differentiated counterparts. Mitochondrial phenotyping of lean and obese ASCs was performed. TBX15 loss- and gain-of-function experiments were carried out and western blotting and electron microscopy studies of mitochondria were performed in white AT biopsies from lean and obese individuals. RESULTS: We found that DNA methylation in adipocyte precursors is significantly modified by the obese environment, and adipogenesis, inflammation, and immunosuppression were the most affected pathways. Also, we identified TBX15 as one of the most differentially hypomethylated genes in obese ASCs, and genetic experiments revealed that TBX15 is a regulator of mitochondrial mass in obese adipocytes. Accordingly, morphological analysis of AT from obese subjects showed an alteration of the mitochondrial network, with changes in mitochondrial shape and number. CONCLUSIONS: We identified a DNA methylation signature in adipocyte precursors associated with obesity, which has a significant impact on the metabolic phenotype of mature adipocytes.


Assuntos
Adipócitos/patologia , Tecido Adiposo/patologia , Metilação de DNA , Mitocôndrias/patologia , Obesidade/genética , Obesidade/patologia , Células-Tronco/metabolismo , Células-Tronco/patologia , Adipócitos/metabolismo , Adipogenia , Adulto , Feminino , Humanos , Inflamação/genética , Inflamação/patologia , Mitocôndrias/genética , Estresse Oxidativo , Magreza/genética , Magreza/patologia
15.
Cell Death Dis ; 8(5): e2802, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28518147

RESUMO

Adipose tissue (AT) has a central role in obesity-related metabolic imbalance through the dysregulated production of cytokines and adipokines. In addition to its known risk for cardiovascular disease and diabetes, obesity is also a major risk for cancer. We investigated the impact of obesity for the expression of survivin, an antiapoptotic protein upregulated by adipokines and a diagnostic biomarker of tumor onset and recurrence. In a cross-sectional study of 111 subjects classified by body mass index, circulating levels of survivin and gene expression in subcutaneous AT were significantly higher in obese patients and positively correlated with leptin. Within AT, survivin was primarily detected in human adipocyte-derived stem cells (hASCs), the adipocyte precursors that determine AT expansion. Remarkably, survivin expression was significantly higher in hASCs isolated from obese patients that from lean controls and was increased by proinflammatory M1 macrophage soluble factors including IL-1ß. Analysis of survivin expression in hASCs revealed a complex regulation including epigenetic modifications and protein stability. Surprisingly, obese hASCs showed survivin promoter hypermethylation that correlated with a significant decrease in its mRNA levels. Nonetheless, a lower level of mir-203, which inhibits survivin protein translation, and higher protein stability, was found in obese hASCs compared with their lean counterparts. We discovered that survivin levels determine the susceptibility of hASCs to apoptotic stimuli (including leptin and hypoxia). Accordingly, hASCs from an obese setting were protected from apoptosis. Collectively, these data shed new light on the molecular mechanisms governing AT expansion in obesity through promotion of hASCs that are resistant to apoptosis, and point to survivin as a potential new molecular player in the communication between AT and tumor cells. Thus, inhibition of apoptosis targeting survivin might represent an effective strategy for both obesity and cancer therapy.


Assuntos
Tecido Adiposo/patologia , Apoptose , Progressão da Doença , Proteínas Inibidoras de Apoptose/metabolismo , Obesidade/metabolismo , Células-Tronco/patologia , Tecido Adiposo/metabolismo , Adulto , Antropometria , Epigênese Genética , Feminino , Humanos , Inflamação/patologia , Proteínas Inibidoras de Apoptose/sangue , Proteínas Inibidoras de Apoptose/genética , Masculino , Pessoa de Meia-Idade , Biossíntese de Proteínas , Survivina , Transcrição Gênica
16.
Transl Res ; 184: 35-44.e4, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28347650

RESUMO

This work aimed to explore the link between angiopoietin-like protein 8 (ANGPTL8) and weight loss after metabolic surgery. In the cross-sectional study (n = 100), circulating ANGPTL8 concentrations were significantly lower in morbidly obese than in lean subjects, and strikingly lower in morbidly obese patients with type 2 diabetes mellitus (T2DM). Conversely, ANGPTL8 expression in subcutaneous adipose tissue (SAT) was higher in morbidly obese patients, particularly in those with T2DM, whereas its expression in visceral adipose tissue was unchanged. The main predictors for circulating levels of ANGPTL8 were BMI and T2DM, whereas ANGPTL8 expression in SAT was determined by the presence of T2DM. The prospective cohort studies before and 1 year after bariatric surgery in morbidly obese patients with (n = 45) and without (n = 30) T2DM, revealed a significant increase of circulating ANGPTL8 levels 1 year after the bariatric surgery. Intriguingly, this increment, which was predicted by basal ANGPTL8 concentrations, appeared as a determinant of T2DM remission. In conclusion, circulating ANGPTL8 levels have an inverse relationship with SAT expression. Low basal levels of ANGPTL8 rebound after bariatric surgery. The increment in ANGPTL8 concentrations at 1 month of follow-up after weight loss emerged as a significant predictor of the T2DM remission at 1 year of follow-up.


Assuntos
Biomarcadores/sangue , Diabetes Mellitus Tipo 2/sangue , Obesidade Mórbida/cirurgia , Hormônios Peptídicos/sangue , Adulto , Proteína 8 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Cirurgia Bariátrica , Biomarcadores/metabolismo , Estudos Transversais , Diabetes Mellitus Tipo 2/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/sangue , Obesidade Mórbida/metabolismo , Hormônios Peptídicos/genética , Estudos Prospectivos , Gordura Subcutânea/metabolismo , Resultado do Tratamento
17.
Transl Res ; 178: 1-12, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27469268

RESUMO

Angiopoietin-like protein 8 (ANGPTL8), a protein implicated in lipid and glucose homeostasis, is present only in mammals, suggesting that it is involved in processes unique to these vertebrates such as pregnancy and homeothermy. We explored the role of ANGPTL8 in maternal-fetal crosstalk and its relationship with newborn adiposity. In a longitudinal analysis of healthy pregnant women, ANGPTL8 levels decreased progressively during pregnancy although remained higher than levels in the postpartum period. In a cross-sectional observational study of women with or without gestational diabetes mellitus (GDM), and their offspring, ANGPTL8 levels were higher in venous cord blood than those in maternal blood and were significantly lower in GDM patients than those in healthy women. Infants small for gestational age and with low-fat mass had the highest ANGPTL8 cord blood levels. Studies in vitro revealed that ANGPTL8 was secreted by brown adipocytes and its expression was increased in experimental models of white-to-brown fat conversion. In addition, ANGPTL8 induced the expression of markers of brown adipocytes. The high levels of ANGPTL8 found in fetal life together with its relationship with newborn adiposity and brown adipose tissue point to ANGPTL8 as a potential new player in the modulation of the thermogenic machinery during the fetal-neonatal transition.


Assuntos
Tecido Adiposo Marrom/metabolismo , Angiopoietinas/sangue , Sistema Endócrino/metabolismo , Desenvolvimento Fetal , Hormônios Peptídicos/sangue , Adipócitos Marrons/metabolismo , Adulto , Proteína 8 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Animais , Feminino , Sangue Fetal/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Fenótipo , Período Pós-Parto/metabolismo , Gravidez
18.
Stem Cells ; 34(10): 2559-2573, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27352919

RESUMO

Adipose tissue-derived stem cells (ASCs) are proposed as an alternative stem cell source to bone marrow-derived cells for immune cell therapy. However, microenvironmental factors may impact the functionality of this population in human adipose tissue (AT). We hypothesized that the fat depot in addition to the donor phenotype controls the immunomodulatory capacity of ASCs. Focusing on obesity and type 2 diabetes (T2D) as metabolic disorders that might affect the immune response of ASCs, we compared the inflammatory response of ASCs from subcutaneous and visceral AT of age-matched donors (lean n = 4, body mass index [BMI] 21.98 ± 1.9; obese n = 4 BMI 33.1 ± 2.1 and T2D n = 4 BMI 35.3 ± 1.5). Obese and particularly T2D-derived ASCs showed increased expression of inflammatory markers, activation of NLRP3 inflammasome and higher migration, invasion and phagocytosis capacities than those derived from lean donors. Remarkably, ASCs derived from obese and T2D subjects exhibited a reduction in typical immunosuppressive activities attributed to stem cells. Accordingly, obese and T2D-ASCs were less effective in suppressing lymphocyte proliferation, activating the M2 macrophage phenotype, and in increasing TGF-ß1 secretion, than lean-derived ASCs. Treatment of lean hASCs with interleukin (IL)-1ß mimicked the dysfunctional immune behavior of obese and T2D hASCs. Conversely, combined treatment with IL1RA and TGF-ß1 reverted the phenotype of obese- and T2D-ASCs. These data indicate that the donor metabolic phenotype compromises the immunomodulatory properties of ASCs. These results are relevant not only for understanding the physiology of ASCs in terms of cell-based therapies but also for their role as key regulators of the immune response. Stem Cells 2016;34:2559-2573.


Assuntos
Tecido Adiposo/patologia , Diabetes Mellitus Tipo 2/patologia , Obesidade/patologia , Células-Tronco/imunologia , Adulto , Feminino , Humanos , Terapia de Imunossupressão , Inflamassomos/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Masculino , Pessoa de Meia-Idade , Fagocitose , Células-Tronco/metabolismo , Doadores de Tecidos , Fator de Crescimento Transformador beta1/metabolismo
19.
Mol Metab ; 5(1): 5-18, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26844203

RESUMO

OBJECTIVE: Glycogen metabolism has emerged as a mediator in the control of energy homeostasis and studies in murine models reveal that adipose tissue might contain glycogen stores. Here we investigated the physio(patho)logical role of glycogen in human adipose tissue in the context of obesity and insulin resistance. METHODS: We studied glucose metabolic flux of hypoxic human adipoctyes by nuclear magnetic resonance and mass spectrometry-based metabolic approaches. Glycogen synthesis and glycogen content in response to hypoxia was analyzed in human adipocytes and macrophages. To explore the metabolic effects of enforced glycogen deposition in adipocytes and macrophages, we overexpressed PTG, the only glycogen-associated regulatory subunit (PP1-GTS) reported in murine adipocytes. Adipose tissue gene expression analysis was performed on wild type and homozygous PTG KO male mice. Finally, glycogen metabolism gene expression and glycogen accumulation was analyzed in adipose tissue, mature adipocytes and resident macrophages from lean and obese subjects with different degrees of insulin resistance in 2 independent cohorts. RESULTS: We show that hypoxia modulates glucose metabolic flux in human adipocytes and macrophages and promotes glycogenesis. Enforced glycogen deposition by overexpression of PTG re-orients adipocyte secretion to a pro-inflammatory response linked to insulin resistance and monocyte/lymphocyte migration. Furthermore, glycogen accumulation is associated with inhibition of mTORC1 signaling and increased basal autophagy flux, correlating with greater leptin release in glycogen-loaded adipocytes. PTG-KO mice have reduced expression of key inflammatory genes in adipose tissue and PTG overexpression in M0 macrophages induces a pro-inflammatory and glycolytic M1 phenotype. Increased glycogen synthase expression correlates with glycogen deposition in subcutaneous adipose tissue of obese patients. Glycogen content in subcutaneous mature adipocytes is associated with BMI and leptin expression. CONCLUSION: Our data establish glycogen mishandling in adipose tissue as a potential key feature of inflammatory-related metabolic stress in human obesity.

20.
PLoS One ; 10(6): e0129644, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26068931

RESUMO

OBJECTIVE: Evidence from mouse models suggests that zinc-α2-glycoprotein (ZAG) is a novel anti-obesity adipokine. In humans, however, data are controversial and its physiological role in adipose tissue (AT) remains unknown. Here we explored the molecular mechanisms by which ZAG regulates carbohydrate metabolism in human adipocytes. METHODS: ZAG action on glucose uptake and insulin action was analyzed. ß1 and ß2-adrenoreceptor (AR) antagonists and siRNA targeting PP2A phosphatase were used to examine the mechanisms by which ZAG modulates insulin sensitivity. Plasma levels of ZAG were measured in a lean patient cohort stratified for HOMA-IR. RESULTS: ZAG treatment increased basal glucose uptake, correlating with an increase in GLUT expression, but induced insulin resistance in adipocytes. Pretreatment of adipocytes with propranolol and a specific ß1-AR antagonist demonstrated that ZAG effects on basal glucose uptake and GLUT4 expression are mediated via ß1-AR, whereas inhibition of insulin action is dependent on ß2-AR activation. ZAG treatment correlated with an increase in PP2A activity. Silencing of the PP2A catalytic subunit abrogated the negative effect of ZAG on insulin-stimulated AKT phosphorylation and glucose uptake but not on GLUT4 expression and basal glucose uptake. ZAG circulating levels were unchanged in a lean patient cohort stratified for HOMA-IR. Neither glucose nor insulin was associated with plasma ZAG. CONCLUSIONS: ZAG inhibits insulin-induced glucose uptake in human adipocytes by impairing insulin signaling at the level of AKT in a ß2-AR- and PP2A-dependent manner.


Assuntos
Adipócitos/metabolismo , Insulina/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Plasma Seminal/metabolismo , Adipócitos/efeitos dos fármacos , Adulto , Índice de Massa Corporal , Células Cultivadas , Ativação Enzimática , Feminino , Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Humanos , Resistência à Insulina , Masculino , Pessoa de Meia-Idade , Proteína Fosfatase 2/genética , Proteínas de Plasma Seminal/sangue , Proteínas de Plasma Seminal/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcriptoma , Glicoproteína Zn-alfa-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...